Mostrar el registro sencillo del ítem

dc.contributor.authorBastidas, Harold
dc.contributor.authorEspinosa, Andres
dc.contributor.authorPachichana, Alvaro
dc.coverage.spatialColombia, Nariño, San Juan de Pasto
dc.coverage.spatialFecha: 2024
dc.date.accessioned2025-02-06T18:24:11Z
dc.date.available2025-02-06T18:24:11Z
dc.date.issued2023-08-01
dc.date.submitted2024-11-27
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29269
dc.description.abstractEl objetivo de este trabajo de grado se enfoca en analizar las concentraciones de compuestos orgánicos volátiles (COVs) presentes en las partículas suspendidas totales (PST) del aire ambiente de la calle 18, entre las carreras 34a y 35 de San Juan de Pasto. Los COVs son sustancias químicas que contienen carbono y se evaporan fácilmente a temperatura ambiente (Agencia de Protección Ambiental de Estados Unidos, 2023). Son emitidos por una amplia variedad de fuentes, incluyendo procesos industriales, productos de consumo, y vehículos motorizados (Organización Mundial de la Salud, 2021). Las PST actúan como portadores efectivos de COVs en la atmósfera, ya que estos compuestos pueden adsorberse en la superficie de las partículas, alterando tanto sus propiedades físico-químicas como su potencial impacto en la salud (Chen et al., 2022). Esta interacción COV-PST es particularmente relevante en áreas urbanas con alta densidad vehicular, donde ambos contaminantes son emitidos simultáneamente (Wang et al., 2023). Los COVs desempeñan un papel crucial en la formación de ozono troposférico y material particulado secundario, contribuyendo así a la contaminación del aire urbano (Seinfeld y Pandis, 2016). Su permanencia en la atmósfera puede variar desde horas hasta meses, dependiendo de su reactividad química y las condiciones ambientales (Atkinson y Arey, 2003). Cuando estos compuestos se asocian con las PST, su comportamiento ambiental puede modificarse significativamente, aumentando su persistencia en el ambiente y potencialmente su biodisponibilidad en el sistema respiratorio humano (García y Martínez, 2023). El proyecto implica la recolección de muestras de PST en puntos específicos con alta actividad vehicular para evaluar la presencia y concentración de COVs adsorbidos en estas partículas. Posteriormente, en el laboratorio, se analizarán las muestras mediante técnicas de desorción térmica y cromatografía de gases acoplada a espectrometría de masas para determinar el perfil y las concentraciones de los COVs presentes en las PST (Zhang et al., 2022). El objetivo es identificar y cuantificar los COVs asociados a las PST y evaluar si esta forma de contaminación representa un riesgo para la salud pública, particularmente para los estudiantes de la Universidad Mariana y la comunidad en general en esa área.es_ES
dc.description.abstractThe objective of this graduate work is focused on analyzing the concentrations of volatile organic compounds (VOCs) present in the total suspended particulate matter (TSP) in the ambient air of 18th Street, between Carreras 34a and 35 in San Juan de Pasto. VOCs are carbon-containing chemicals that evaporate readily at room temperature (U.S. Environmental Protection Agency, 2023). They are emitted from a wide variety of sources, including industrial processes, consumer products, and motor vehicles (World Health Organization, 2021). TSPs act as effective carriers of VOCs in the atmosphere, as these compounds can adsorb on the surface of particles, altering both their physicochemical properties and their potential health impact (Chen et al., 2022). This VOC-PST interaction is particularly relevant in urban areas with high vehicle density, where both pollutants are emitted simultaneously (Wang et al., 2023). VOCs play a crucial role in the formation of tropospheric ozone and secondary particulate matter, thus contributing to urban air pollution (Seinfeld and Pandis, 2016). Their permanence in the atmosphere can vary from hours to months, depending on their chemical reactivity and ambient conditions (Atkinson and Arey, 2003). When these compounds are associated with PSTs, their environmental behavior can be significantly modified, increasing their persistence in the environment and potentially their bioavailability in the human respiratory system (Garcia and Martinez, 2023). The project involves the collection of TSP samples at specific points with high vehicular activity to evaluate the presence and concentration of VOCs adsorbed on these particles. Subsequently, in the laboratory, the samples will be analyzed using thermal desorption techniques and gas chromatography coupled to mass spectrometry to determine the profile and concentrations of VOCs present in the TSPs (Zhang et al., 2022). The objective is to identify and quantify the VOCs associated with TSPs and to assess whether this form of pollution represents a risk to public health, particularly for Marian University students and the general community in that area.es_ES
dc.description.tableofcontents1. Resumen del proyecto .................................................................................................13 2. Introducción ................................................................................................................14 3. Antecedentes...............................................................................................................16 4. Justificación y Planteamiento del problema................................................................19 4.1 Justificación.........................................................................................................19 4.2 Planteamiento del problema................................................................................20 4.2 Hipótesis..............................................................................................................21 5 Objetivos.....................................................................................................................22 5.1 Objetivo general ..................................................................................................22 5.2 Objetivos específicos ..........................................................................................22 6 Materiales y Métodos..................................................................................................23 6.1 Área de estudio....................................................................................................23 6.2 Descripción de metodologías..............................................................................24 6.2.1 Estandarización del procedimiento para análisis de TSP y COVs..............24 6.2.2 Análisis de partículas TSP y COVs ............................................................25 6.3 Diseño experimental............................................................................................30 6.4 Línea de investigación y área temática ...............................................................31 7 Resultados y discusión ................................................................................................32 7.1 Estandarización del procedimiento de análisis de TSP y (COVs) en aire a partir de métodos de análisis instrumental....................................................................................32 7.2 Análisis Concentración de COVs y TSP..................................................................47 7.3 Relación entre los niveles de concentración de compuestos orgánicos volátiles (COVs) y otras variables ambientalmente determinantes...................................................54 8. Conclusiones...............................................................................................................67 9. Recomendaciones........................................................................................................68 10. Referencias bibliográficas.......................................................................................69 11. Anexos.....................................................................................................................83es_ES
dc.format.extent87 paginas.
dc.format.mimetypeapplication/pdfes_ES
dc.language.isospaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleEvaluación de las concentraciones de Compuestos Orgánicos Volátiles contenidos en el material particulado suspendido en la calle 18 entre las carreras 34ª y 35 de San Juan de Pastoes_ES
dc.title.alternativeEVALUATION OF THE CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS CONTAINED IN SUSPENDED PARTICULATE MATTER ON 18TH STREET BETWEEN CARRERAS 34ª AND 35 IN SAN JUAN DE PASTO.es_ES
dcterms.bibliographicCitationAbdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2013). Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmospheric Environment, 71, 260-294. https://doi.org/10.1016/j.atmosenv.2013.01.061es_ES
dcterms.bibliographicCitationAgencia de Protección Ambiental de EE. UU. (EPA). (1999). Compendium method TO-13A: Determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography/mass spectrometry (GC/MS). https://www.epa.gov/sites/production/files/2015-07/documents/to-13arv.pdf.es_ES
dcterms.bibliographicCitationAgencia de Protección Ambiental de Estados Unidos (EPA). (2014). "Aire Exterior: Muestreo de la Calidad del Aire". Recuperado de: https://www.epa.gov/outdoor-air-quality-data/outdoor-air quality-data-monitor-valueses_ES
dcterms.bibliographicCitationAgencia de Protección Ambiental de Estados Unidos (EPA). (2016). "Sampling of Ambient Air for Total Suspended Particulate Matter (SPM and TSP)". Recuperado de: https://www.epa.gov/sites/default/files/2015-07/documents/epa-io-2.1.pdfes_ES
dcterms.bibliographicCitationAgencia de Protección Ambiental de Estados Unidos (EPA). (2016). "Sampling of Ambient Air for Total Suspended Particulate Matter (SPM and TSP)". Recuperado de: https://www.epa.gov/sites/default/files/2015-07/documents/epa-io-2.1.pdfes_ES
dcterms.bibliographicCitationAgencia de Protección Ambiental de Estados Unidos. (2023). Compuestos orgánicos volátiles: Definición e impacto en la calidad del aire interior. https://www.epa.gov/indoor-air-quality iaq/volatile-organic-compounds-impact-indoor-air-qualityes_ES
dcterms.bibliographicCitationAgencia Europea de Medio Ambiente. (2020). Air quality in Europe — 2020 report. https://www.eea.europa.eu/publications/air-quality-in-europe-2020-reportes_ES
dcterms.bibliographicCitationAir Quality, Energy and Health (AQE). (2010, 1 enero). WHO guidelines for indoor air quality: selected pollutants. https://www.who.int/publications/i/item/9789289002134es_ES
dcterms.bibliographicCitationAlberto, M. P. L. (2023, 1 febrero). Evaluación de la concentración de material particulado en el área de ensacado de harina en la empresa Industrias Catedral S.A. https://repositorio.uta.edu.ec/jspui/handle/123456789/38487es_ES
dcterms.bibliographicCitationAlghamdi, M. A., Khoder, M., Harrison, R. M., Hyvärinen, A. P., Hussein, T., Al-Jeelani, H., Abdelmaksoud, A. S., Goknil, M. H., Shabbaj, I. I., Almehmadi, F. M., Lihavainen, H., Kulmala, M., & Hämeri, K. (2014). Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Quality, Atmosphere & Health, 7(4), 467-480. https://doi.org/10.1007/s11869-014-0263-xes_ES
dcterms.bibliographicCitationAlghamdi, M. A., Khoder, M., Harrison, R. M., Hyvärinen, A. P., Hussein, T., Al-Jeelani, H., Abdelmaksoud, A. S., Goknil, M. H., Shabbaj, I. I., Almehmadi, F. M., Lihavainen, H., Kulmala, M., & Hämeri, K. (2021). Temporal variations of O3 and NOx in the urbanbackground atmosphere of the coastal city Jeddah, Saudi Arabia. Atmospheric Environment, 244, 117911. https://doi.org/10.1016/j.atmosenv.2020.117911es_ES
dcterms.bibliographicCitationality. Retrieved from https://www.epa.gov/indoor-air-quality-iaq/volatile-organic compounds-impact-indoor-air-quality Anemometer. (s. f.). Scribd. https://es.scribd.com/doc/131184108/Anemometeres_ES
dcterms.bibliographicCitationAtkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34(12- 14), 2063-2101. https://doi.org/10.1016/S1352-2310(99)00460-4es_ES
dcterms.bibliographicCitationAtkinson, R., & Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 37(2), 197-219. https://doi.org/10.1016/S1352-2310(03)00391-1es_ES
dcterms.bibliographicCitationAtkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., & Troe, J. (2006). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species. Atmospheric Chemistry and Physics, 6(11), 3625-4055. https://doi.org/10.5194/acp-6-3625-2006es_ES
dcterms.bibliographicCitationAtkinson, R., y Arey, J. (2003). Atmospheric degradation of volatile organic compounds. Chemical Reviews, 103(12), 4605-4638. https://doi.org/10.1021/cr0206420es_ES
dcterms.bibliographicCitationBaker, R. C. (2016). Flow measurement handbook: Industrial designs, operating principles, performance, and applications (2nd ed.). Cambridge University Preses_ES
dcterms.bibliographicCitationBalanza analítica AS 220.R2 PLUS. (2024, 7 mayo). RADWAG Balanzas Electrónicas. https://radwag.com/es/balanza-analitica-as-220-r2-plus,w1,ZAE,101-101-125-100es_ES
dcterms.bibliographicCitationBari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of The Total Environment, 631-632, 627-640. https://doi.org/10.1016/j.scitotenv.2018.03.023es_ES
dcterms.bibliographicCitationBari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of The Total Environment, 631- 632, 627-640. https://doi.org/10.1016/j.scitotenv.2018.03.023es_ES
dcterms.bibliographicCitationBenavides, I. (2019, 30 septiembre). Calidad del aire en Pasto no es la mejor de Colombia | Udenar Periódico. Udenar Periódico. https://periodico.udenar.edu.co/calidad-del-aire en-pasto-no-es-la-mejor-de-colombia/es_ES
dcterms.bibliographicCitationBloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., & Pilling, M. J. (2005). Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmospheric Chemistry and Physics, 5(3), 641-664. https://doi.org/10.5194/acp-5-641-2005es_ES
dcterms.bibliographicCitationBrunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The lancet, 360(9341), 1233-1242. https://doi.org/10.1016/S0140-6736(02)11274-8es_ES
dcterms.bibliographicCitationCao, X. L. (2010). Phthalate esters in foods: Sources, occurrence, and analytical methods. *Comprehensive Reviews in Food Science and Food Safety*, 9(1), 21-43. https://doi.org/10.1111/j.1541-4337.2009.00093.xes_ES
dcterms.bibliographicCitationCerón, J. G., Cerón, R. M., Adelaida, C. R., Ramírez, E., Rangel, M., Estrella, A., & Montalvo, C. (2014). Diurnal and seasonal variations of carbonyls and their effect on ozone and PM2.5 in the atmosphere of Monterrey, Mexico. Atmosphere, 5(2), 273-291. https://doi.org/10.3390/atmos5020273es_ES
dcterms.bibliographicCitationCharacterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: Cooking emissions. Environmental Science & Technology, 50(3), 1243- 1250. https://doi.org/10.1021/acs.est.5b04618es_ES
dcterms.bibliographicCitationChen, L., & Wong, K. (2021). Urban air quality assessment: Correlations between volatile organic compounds and particulate matter. Environmental Science & Technology, 55(15), 9876-9885. https://doi.org/10.1021/acs.est.1c02468es_ES
dcterms.bibliographicCitationCohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., ... & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907-1918. https://doi.org/10.1016/S0140-6736(17)30505-6es_ES
dcterms.bibliographicCitationCohen, B. S. y Hering, S. V. (1995). Air sampling instruments for evaluation of atmospheric contaminants (9a ed.). American Conference of Governmental Industrial Hygienists.es_ES
dcterms.bibliographicCitationcompounds at a roadside environment in Hong Kong: An investigation of emissions from traffic and nearby businesses. Atmospheric Environment, 219, 117025. https://doi.org/10.1016/j.atmosenv.2019.117025es_ES
dcterms.bibliographicCitationCortes, J., González, C. M., Morales, L., Abalos, M., Abad, E., & Aristizábal, B. H. (2021). Air pollutants and their correlation with volatile organic compounds in ambient air of different areas in Medellín, Colombia. *Atmospheric Pollution Research*, 12(3), 100-109. https://doi.org/10.1016/j.apr.2021.01.003es_ES
dcterms.bibliographicCitationCosta, L. G. (1996). Biomarker research in neurotoxicology: The role of mechanistic studies to bridge the gap between the laboratory and epidemiological investigations. *Environmental Health Perspectives*, 104(Suppl 1), 55-67. https://doi.org/10.1289/ehp.96104s155es_ES
dcterms.bibliographicCitationDekant, W., & Klaunig, J. E. (2016). Toxicology of decamethylcyclopentasiloxane (D5). *Regulatory Toxicology and Pharmacology*, 74, S67-S76. https://doi.org/10.1016/j.yrtph.2015.06.011es_ES
dcterms.bibliographicCitationDettmer-Wilde, K., & Engewald, W. (Eds.). (2014). Practical gas chromatography: A comprehensive reference. Springer.es_ES
dcterms.bibliographicCitationDirective - 2004/42 - EN - Decopaint Directive - EUR-Lex. (s. f.). https://eur-lex.europa.eu/legal content/EN/ALL/?uri=celex%3A32004L004es_ES
dcterms.bibliographicCitationDirective - 2010/75 - EN - EUR-LEX. (s. f.). https://eur-lex.europa.eu/legal content/EN/TXT/?uri=CELEX%3A32010L0075&qid=172253060970es_ES
dcterms.bibliographicCitationDSpace. (s. f.). https://bonga.unisimon.edu.co/bitstream/handle/20.500.12442/7985/Gu%C3%ADa% 20de%20Cromatograf%C3%ADa%20liquida%20de%20alto%20rendimiento%28HP LC%29%20y%20Cromatograf%C3%ADa%20de%20gases%20%28CG%29.pdf?isA llowed=y&sequence=1es_ES
dcterms.bibliographicCitationDumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T., & Bayram, A. (2014). Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmospheric Environment, 98, 168-178. https://doi.org/10.1016/j.atmosenv.2014.08.048es_ES
dcterms.bibliographicCitationEnvironmental Protection Agency (EPA). (2022). Toluene. Integrated Risk Information System (IRIS). https://iris.epa.gov/ChemicalLanding/&substance_nmbr=118es_ES
dcterms.bibliographicCitationEPA (Agencia de Protección Ambiental de los Estados Unidos). (2022). Hexane. https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutantses_ES
dcterms.bibliographicCitationFilley, C. M., Halliday, W., & Kleinschmidt-DeMasters, B. K. (2004). The effects of toluene on the central nervous system. *Journal of Neuropathology & Experimental Neurology*, 63(1), 1- 12. https://doi.org/10.1093/jnen/63.1.1es_ES
dcterms.bibliographicCitationFullana, A., Carbonell-Barrachina, A. A., & Sidhu, S. (2004). Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. Journal of Agricultural and Food Chemistry, 52(16), 5207-5214. https://doi.org/10.1021/jf035241fes_ES
dcterms.bibliographicCitationGentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J., Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H., & Robinson, A. L. (2017). Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. Environmental Science & Technology, 51(3), 1074-1093. https://doi.org/10.1021/acs.est.6b04509es_ES
dcterms.bibliographicCitationGu, Y., Li, Q., Wei, D., Gao, L., Tan, L., Su, G., Liu, G., Liu, W., Li, C., & Wang, Q. (2019). Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China. Ecotoxicology and Environmental Safety, 169, 797-806. https://doi.org/10.1016/j.ecoenv.2018.11.091es_ES
dcterms.bibliographicCitationGuenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471-1492. https://doi.org/10.5194/gmd-5-1471- 2012es_ES
dcterms.bibliographicCitationGuerrero, J. A., Rodríguez, Y. A., & Arciniegas, A. (2019). Evaluación de la calidad del aire en la ciudadGG de Pasto, Colombia: Un enfoque en contaminantes criterio y compuestos orgánicos volátiles. Revista de la Facultad de Ciencias, 8(2), 45-60.es_ES
dcterms.bibliographicCitationGuo, H., Chen, K., Wang, P., Hu, J., Ying, Q., Gao, A., & Zhang, H. (2020). Simulation of summer ozone and its sensitivity to emission changes in China. Atmospheric Pollution Research, 11(6), 1253-1261. https://doi.org/10.1016/j.apr.2020.04.013es_ES
dcterms.bibliographicCitationGuo, H., et al. (2020). Source apportionment of volatile organic compounds in urban and rural atmospheres in China. Journal of Environmental Sciences.es_ES
dcterms.bibliographicCitationGuo, H., Ling, Z. H., Cheng, H. R., Cheung, K., Zheng, C., Wang, D. W., Li, Y. J., Jiang, F., Biswas, H. K., Hao, Y. F., & Yu, Y. F. (2020). Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong. Atmospheric Chemistry and Physics, 20(1), 181-200. https://doi.org/10.5194/acp-20-181-2020es_ES
dcterms.bibliographicCitationGuo, H., Ling, Z. H., Cheng, H. R., Simpson, I. J., Lyu, X. P., Wang, X. M., Shao, M., Lu, H. X., Ayoko, G., Zhang, Y. L., Saunders, S. M., Lam, S. H. M., Wang, J. L., & Blake, D. R. (2020). Tropospheric volatile organic compounds in China. Science of The Total Environment, 701, 134631. https://doi.org/10.1016/j.scitotenv.2019.134631es_ES
dcterms.bibliographicCitationGuo, S., Hu, M., Guo, Q., Zhang, X., Schauer, J. J., & Zhang, R. (2013). Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmospheric Chemistry and Physics, 13(16), 8303-8314. https://doi.org/10.5194/acp-13-8303-2013es_ES
dcterms.bibliographicCitationHarper, M. (2000). Sorbent trapping of volatile organic compounds from air. Journal of Chromatography. Sorbent trapping of volatile organic compounds from air - ScienceDirectes_ES
dcterms.bibliographicCitationHarris, D. C. (2007). Análisis químico cuantitativo (3ra ed.). Reverté.es_ES
dcterms.bibliographicCitationHe, L., Zhang, S., Hu, J., Li, Z., Zheng, X., Cao, Y., Xu, G., Yan, M., & Wu, Y. (2021). On-road emission measurements of reactive volatile organic compounds from heavy-duty diesel trucks in China. Environmental Pollution, 285, 117440. https://doi.org/10.1016/j.envpol.2021.117440es_ES
dcterms.bibliographicCitationHellén, H., Schallhart, S., Praplan, A. P., Tykkä, T., Aurela, M., Lohila, A., & Hakola, H. (2021). Sesquiterpenes dominate monoterpenes in northern wetland emissions. Atmospheric Chemistry and Physics, 21(11), 8775–8807. https://doi.org/10.5194/acp-21-8775-2021es_ES
dcterms.bibliographicCitationHellén, H., Tykkä, T., & Hakola, H. (2018). Importance of monoterpenes and isoprene in urban air in northern Europe. Atmospheric Environment, 59, 59-66. https://doi.org/10.1016/j.atmosenv.2012.04.049es_ES
dcterms.bibliographicCitationHeudorf, U., Mersch-Sundermann, V., & Angerer, J. (2007). Phthalates: Toxicology and exposure. *International Journal of Hygiene and Environmental Health*, 210(5), 623-634. https://doi.org/10.1016/j.ijheh.2007.07.011es_ES
dcterms.bibliographicCitationHinks, M. L., Montoya-Aguilera, J., Ellison, L., Lin, P., Laskin, A., Laskin, J., Shiraiwa, M., Dabdub, D., & Nizkorodov, S. A. (2018). Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene. Atmospheric Chemistry and Physics, 18(3), 1643-1652. https://doi.org/10.5194/acp-18-1643-2018es_ES
dcterms.bibliographicCitationIARC Publications Website - IARC Monographs on the Identification of Carcinogenic Hazards to Humans. (s. f.). https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs On-The-Identification-Of-Carcinogenic-Hazards-To-Humanses_ES
dcterms.bibliographicCitationJC MEDICAL SUPPLIES. (2024, 8 marzo). TERMOHIGRÓMETRO TA218C WMETERS. JC Medical Supplies. https://www.jcmedicalsupplies.com/producto/termohigrometro_ta218c/#:~:text=Le% 20permitir%C3%A1%20comprobar%20el%20nivel,m%C3%ADnima%20en%20los %20dos%20casos.es_ES
dcterms.bibliographicCitationJiang, N., Duan, S., Yu, X., Zhang, R., & Wang, K. (2017). Comparative major components and health risks of toxic elements and polycyclic aromatic hydrocarbons of PM2.5 in winter and summer in Zhengzhou: Based on three-year data. Atmospheric Research, 191, 1-10. https://doi.org/10.1016/j.atmosres.2017.02.014es_ES
dcterms.bibliographicCitationKhoder, M. I. (2007). Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmospheric Environment, 41(3), 554-566. https://doi.org/10.1016/j.atmosenv.2006.08.051es_ES
dcterms.bibliographicCitationKim, K. H., et al. (2019). Volatile organic compounds in ambient air: Sources and implications on public health. Critical Reviews in Environmental Science and Technology.es_ES
dcterms.bibliographicCitationKlein, F., Platt, S. M., Farren, N. J., Detournay, A., Bruns, E. A., Bozzetti, C., Daellenbach, K. R., Kilic, D., Kumar, N. K., Pieber, S. M., Slowik, J. G., Temime-Roussel, B., Marchand, N., Hamilton, J. F., Baltensperger, U., Prévôt, A. S. H., & El Haddad, I. (2016).es_ES
dcterms.bibliographicCitationKnothe, G. (2008). "Designer" biodiesel: Optimizing fatty ester composition to improve fuel properties. *Energy & Fuels*, 22(2), 1358-1364. https://doi.org/10.1021/ef700639ees_ES
dcterms.bibliographicCitationKumar, A., Singh, D., Kumar, K., Singh, B. B., & Jain, V. K. (2023). Distribution of BTEX in the ambient air of Delhi: Long-term observations and source characterization. Atmospheric Pollution Research, 14(2), 101656. https://doi.org/10.1016/j.apr.2022.101656es_ES
dcterms.bibliographicCitationLatini, G., De Felice, C., & Verrotti, A. (2004). Plasticizers, infant nutrition and reproductive health. *Reproductive Toxicology*, 19(1), 27-33. https://doi.org/10.1016/j.reprotox.2004.05.011es_ES
dcterms.bibliographicCitationLechner, M., Pinto, A. N., Schneider-Reiß, K., & Püttmann, W. (2020). Occurrence and ecological risk assessment of fatty acid methyl esters (FAMEs) in German river systems. *Environmental Science & Technology*, 54(8), 4916-4923. https://doi.org/10.1021/acs.est.9b07276es_ES
dcterms.bibliographicCitationLegreid, G., Lööv, J. B., Staehelin, J., Hueglin, C., Hill, M., Buchmann, B., Prevot, A. S. H., & Reimann, S. (2007). Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zürich (Europe): Seasonal variation and source allocation. Atmospheric Environment, 41(38), 8409-8423. https://doi.org/10.1016/j.atmosenv.2007.07.026es_ES
dcterms.bibliographicCitationLi, Y., Schwab, J. J., & Demerjian, K. L. (2019). Measurements of ambient volatile organic compounds at two suburban sites in New York State. Journal of the Air & Waste Management Association, 69(10), 1188-1202. https://doi.org/10.1080/10962247.2019.1640803es_ES
dcterms.bibliographicCitationLim, Y. B., Kim, H., Kim, J. Y., & Bae, G. N. (2014). Photochemical production of ozone and secondary organic aerosol from gasoline-vehicle exhaust. *Environmental Science & Technology*, 48(16), 9952-9960. https://doi.org/10.1021/es502321jes_ES
dcterms.bibliographicCitationLiu, Y., Wang, H., Jing, S., Gao, Y., Peng, Y., Lou, S., Cheng, T., Tao, S., Li, L., Li, Y., Huang, D., Wang, Q., & An, J. (2020). Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport. Atmospheric Environment, 237, 117740. https://doi.org/10.1016/j.atmosenv.2020.117740es_ES
dcterms.bibliographicCitationMarć, M., Bielawska, M., Simeonov, V., Namieśnik, J., & Zabiegała, B. (2015). The effect of anthropogenic activity on BTEX, NO2, SO2, and CO concentrations in urban air of the spa city of Sopot and medium-industrialized city of Tczew located in North Poland. Environmental Research, 147, 513-524. https://doi.org/10.1016/j.envres.2016.03.014es_ES
dcterms.bibliographicCitationMartí-Cid, R., Bocio, A., Guardia, M., & Massagué, J. (2008). Determinación de hidrocarburos aromáticos policíclicos en muestras de alimentos de origen vegetal y animal mediante cromatografía de gases-espectrometría de masas. Trazas, 49, 1-23.es_ES
dcterms.bibliographicCitationMartínez, J., García, L., & Fernández, R. (2024). Análisis de correlaciones entre contaminantes atmosféricos en zonas urbanas. Atmospheric Environment, 203, 117-129. https://doi.org/10.1016/j.atmosenv.2024.01.015es_ES
dcterms.bibliographicCitationMartins, E. M., Nunes, A. C. L., & Correa, S. M. (2021). Understanding Ozone Formation in an Urban Environment in Brazil. Environments, 8(2), 11. https://doi.org/10.3390/environments8020011es_ES
dcterms.bibliographicCitationMcNair, H. M., Miller, J. M., & Snow, N. H. (2019). Basic gas chromatography (3rd ed.). John Wiley & Sons.es_ES
dcterms.bibliographicCitationMeléndez, I., Quijano, M., & Quijano, A. (2016). Estudio preliminar de la concentración de hidrocarburos aromáticos policíclicos en el material particulado respirable (PM10) de Barranquilla, Colombia. Prospectiva, 14(1), 70-78es_ES
dcterms.bibliographicCitationMinisterio para la Transición Ecológica y el Reto Demográfico. (s.f.). Compuestos orgánicos volátiles. https://www.miteco.gob.es/es/calidad-y-evaluacion ambiental/temas/atmosfera-y-calidad-del-aire/emisiones/act emis/compuestos_organicos_volatiles.htmles_ES
dcterms.bibliographicCitationOMS. (2021). Calidad del aire y salud. https://www.who.int/teams/environment-climate-change-and health/air-quality-and-healtes_ES
dcterms.bibliographicCitationOrganización Mundial de la Salud (OMS). (2005). "Calidad del aire interior: riesgos para la salud en el hogar y en el trabajo". Recuperado de: https://www.who.int/publications/i/item/9241563259es_ES
dcterms.bibliographicCitationOrganización Mundial de la Salud (OMS). (2020). Hidrocarburos aromáticos policíclicos y cáncer. https://www.who.int/es/news-room/fact-sheets/detail/polycyclic-aromatic-hydrocarbons-and canceres_ES
dcterms.bibliographicCitationOrganización Panamericana de la Salud (OPS) & Organización Mundial de la Salud (OMS). (s.f.). Calidad del aire ambiente. https://www.paho.org/es/temas/calidad-aire-ambientees_ES
dcterms.bibliographicCitationOrtega, L. F., & Bravo, M. C. (2020). Exposición ocupacional a compuestos orgánicos volátiles en talleres de pintura automotriz de Pasto, Nariño. Revista de Salud Pública, 22(3), 1-9.es_ES
dcterms.bibliographicCitationPöschl, U., & Shiraiwa, M. (2015). Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chemical Reviews, 115(10), 4440-4475. https://doi.org/10.1021/cr500487ses_ES
dcterms.bibliographicCitationRamírez, N., Cuartas, D. E., & Lizcano, A. (2018). Evaluación de la exposición a BTEX en trabajadores de estaciones de servicio de combustible en Bogotá. Revista de Salud Pública, 20(1), 53-59.es_ES
dcterms.bibliographicCitationRamírez, V., Sarmiento, R., Lobo, M. y Roa, LA (2012). Niveles de benceno, tolueno y xileno en el aire de la ciudad de Bogotá y sus efectos en la salud humana. Revista de Salud Pública, 14(5), 858-870.es_ES
dcterms.bibliographicCitationResolución 2254 de 2017. Por la cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones. Ministerio de Ambiente y Desarrollo Sostenible. http://www.ideam.gov.co/documents/51310/527391/2.+Resoluci%C3%B3n+2254+de+2017 +-+Niveles+Calidad+del+Aire..pdf/c22a285e-058e-42b6-aa88-2745fafad39fes_ES
dcterms.bibliographicCitationRuiz Abad, J. F., Belalcázar, L. C., & Ceballos, J. (2018). Concentraciones de Hidrocarburos Aromáticos Policíclicos (HAP) en el material particulado fino (PM2.5) en Pasto, Colombia. Revista Logos Ciencia & Tecnología, 10(2), 87-97. https://doi.org/10.22335/rlct.v10i2.624es_ES
dcterms.bibliographicCitationSahu, L. K., & Saxena, P. (2015). High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: Role of anthropogenic, biomass burning, biogenic and photochemical sources. Atmospheric Research, 164-165, 84-94. https://doi.org/10.1016/j.atmosres.2015.04.021es_ES
dcterms.bibliographicCitationSalameh, T., Sauvage, S., Afif, C., Borbon, A., & Locoge, N. (2021). Harmonized Source Apportionment of Volatile Organic Compounds and Sensitivity to the Selection of Input Parameters: An Inter-Model Comparison Exercise. Atmosphere, 12(3), 373. https://doi.org/10.3390/atmos12030373es_ES
dcterms.bibliographicCitationSalthammer, T. (2016). Very volatile organic compounds: an understudied class of indoor air pollutants. Indoor Air, 26(1), 25-38. https://pubmed.ncbi.nlm.nih.gov/25471461/es_ES
dcterms.bibliographicCitationSalthammer, T., et al. (2018). Occurrence and sources of semi-volatile organic compounds in indoor air.es_ES
dcterms.bibliographicCitationSeinfeld, J. H., y Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change (3ª ed.). John Wiley & Sons. https://books.google.com.co/books?id=n_RmCgAAQBAJ&lpg=PR1&hl=es&pg=PA345#v= onepage&q&f=falsees_ES
dcterms.bibliographicCitationShi, X., Zhao, Y., Zhang, R., He, C., & Wang, X. (2022). Characterization of volatile organic compounds and their sources in urban environments: A review. Environmental Pollution, 292, 118446. https://doi.org/10.1016/j.envpol.2021.118446es_ES
dcterms.bibliographicCitationShi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J., Barratt, B., ... Zheng, M. (2020). Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH Beijing)". Atmospheric Chemistry and Physics, 20(3), 1809-1825. https://doi.org/10.5194/acp-20-1809-2020es_ES
dcterms.bibliographicCitationSkoog, DA, Holler, FJ y Crouch, SR (2014). Principios de análisis instrumental (6ª ed.). Cengage.https://www.academia.edu/36784861/Principios_de_Analisis_Instrumental_ Skoog_6ta_pdfes_ES
dcterms.bibliographicCitationTan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z., Xie, S., Zeng, L., & Zhang, Y. (2021). Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: A case study based on box model simulation. Atmospheric Chemistry and Physics, 21(18), 13781-13798. https://doi.org/10.5194/acp-21-13781-2021es_ES
dcterms.bibliographicCitationTie, X., Brasseur, G., Emmons, L., Horowitz, L., & Kinnison, D. (2003). Effects of aerosols on tropospheric oxidants: A global model study. Journal of Geophysical Research: Atmospheres, 106(D22), 22931-22964. https://doi.org/10.1029/2001JD900206es_ES
dcterms.bibliographicCitationU.S. Environmental Protection Agency. (2022). Criteria air pollutants. https://www.epa.gov/criteria air-pollutants.es_ES
dcterms.bibliographicCitationU.S. EPA. (2022). Volatile Organic Compounds' Impact on Indoor Air Qu Vallero, D. A. (2014). "Air Pollution Sampling Techniques". En: "Fundamentals of Air Pollution" (pp. 261-292). Academic Press.es_ES
dcterms.bibliographicCitationVolkamer, R., Baidar, S., Campos, T. L., Coburn, S., DiGangi, J. P., Dix, B., Eloranta, E. W., Koenig, T. K., Morley, B., Ortega, I., Pierce, B. R., Reeves, M., Sinreich, R., Wang, S., Zondlo, M. A., & Romashkin, P. A. (2017). Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements. Atmospheric Measurement Techniques, 8(5), 2121-2148. https://doi.org/10.5194/amt-8-2121-2015es_ES
dcterms.bibliographicCitationVon Lau, E., Gan, S., & Ng, H. K. (2010). Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils. International Journal Of Analytical Chemistry, 2010, 1-9. https://doi.org/10.1155/2010/398381es_ES
dcterms.bibliographicCitationWagner, P., & Kuttler, W. (2014). Biogenic and anthropogenic isoprene in the near-surface urban atmosphere — A case study in Essen, Germany. Science of The Total Environment, 475, 104- 115. https://doi.org/10.1016/j.scitotenv.2013.12.026es_ES
dcterms.bibliographicCitationWang, G., Cheng, S., Wei, W., Zhou, Y., Yao, S., & Zhang, H. (2016). Characteristics and source apportionment of VOCs in the suburban area of Beijing, China. Atmospheric Pollution Research, 7(4), 711-724. https://doi.org/10.1016/j.apr.2016.03.006es_ES
dcterms.bibliographicCitationWoolfenden, E. (2010). Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. https://www.sciencedirect.com/science/article/abs/pii/S0021967309018470es_ES
dcterms.bibliographicCitationWorld Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://www.who.int/publications/i/item/9789240034228es_ES
dcterms.bibliographicCitationXu, J., Griffin, R. J., Liu, Y., Nakao, S., & Cocker III, D. R. (2020). Simulated impact of NOx on SOA formation from oxidation of toluene and m-xylene. Atmospheric Environment, 244, 117914. https://doi.org/10.1016/j.atmosenv.2020.117914es_ES
dcterms.bibliographicCitationXue, L., Wang, T., Gao, J., Ding, A., Zhou, X., Blake, D. R., Wang, X., Saunders, S. M., Fan, S., Zuo, H., Zhang, Q., & Wang, W. (2022). Increasing summer and winter ozone pollution in Chinafrom 2013 to 2020: Evidence from ground observations. Science Bulletin, 67(3), 248-256. https://doi.org/10.1016/j.scib.2021.10.022es_ES
dcterms.bibliographicCitationYan, C., Nie, W., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli, P., Junninen, H., Jokinen, T., Sarnela, N., Häme, S. A. K., Schobesberger, S., Canonaco, F., Yao, L., Prévôt, A. S. H., Petäjä, T., Kulmala, M., Sipilä, M., Worsnop, D. R., & Ehn, M. (2022). Source characterization of atmospheric organic aerosol using high-resolution mass spectrometry. Progress in Earth and Planetary Science, 9(1), 24. https://doi.org/10.1186/s40645-022-00483-6es_ES
dcterms.bibliographicCitationYan, Y., Tham, Y. J., Liu, C., Wu, C., Xie, M., Wang, X., Wang, T., & Li, S. (2023). Multiphase Formation of Nitrated Phenols in the Polluted Atmosphere: Insights into the Contributions of Different Formation Pathways. Environmental Science & Technology, 57(4), 1765-1775. https://doi.org/10.1021/acs.est.2c08489es_ES
dcterms.bibliographicCitationZárate, E., Belalcázar, L. C., Clappier, A., Manzi, V., & Van Den Bergh, H. (2007). Air quality modelling over Bogota, Colombia: Combined techniques to estimate and evaluate emission inventories. Atmospheric Environment, 41(29), 6302-6318. https://doi.org/10.1016/j.atmosenv.2007.03.011es_ES
dcterms.bibliographicCitationZhang, Y., Li, R., Fu, H., Chen, J., & Kawamura, K. (2020). Molecular characterization of ambient organic aerosol in urban Shanghai during summer: Implications for secondary organic aerosol formation. Atmospheric Chemistry and Physics, 20(24), 15907-15927. https://doi.org/10.5194/acp-20-15907-2020es_ES
dcterms.bibliographicCitationZhang, Y., Li, R., Fu, H., Zhou, D., & Chen, J. (2018). Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. Journal of Environmental Sciences, 71, 233-248. https://doi.org/10.1016/j.jes.2018.05.027es_ES
dcterms.bibliographicCitationZhang, Y., Yang, W., Simpson, I., Huang, X., Yu, J., Huang, Z., Wang, Z., Zhang, Z., Liu, D., Huang, Z., Wang, Y., Pei, C., Shao, M., Blake, D. R., Zheng, J., Huang, Z., & Liu, X. (2018). Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China. Environmental Pollution, 233, 806-819. https://doi.org/10.1016/j.envpol.2017.10.133es_ES
dcterms.bibliographicCitationZhang, Y., Yang, X., Brown, R., Yang, L., Morawska, L., Ristovski, Z., Fu, Q., & Huang, C. (2020). Shipping emissions and their impacts on air quality in China. Science of The Total Environment, 743, 140699. https://doi.org/10.1016/j.scitotenv.2020.140699es_ES
dcterms.bibliographicCitationZheng, H., Kong, S., Yan, Y., Chen, N., Yao, L., Liu, X., Wu, F., Cheng, Y., Niu, Z., Zheng, S., Zeng, X., Yan, Q., Wu, J., Zheng, M., Liu, D., Zhao, D., & Qi, S. (2021). Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Science of The Total Environment, 765, 142741. https://doi.org/10.1016/j.scitotenv.2020.142741es_ES
dcterms.bibliographicCitationGarcía, M., & Martínez, R. (2023). Enhanced persistence of VOCs through particle-bound mechanisms in urban environments. Atmospheric Environment, 203, 117-128.es_ES
dcterms.bibliographicCitationHernández, A., & López, M. (2023). Modification of VOC bioavailability through particle-binding mechanisms in urban environments. Environmental Science & Pollution Research, 30(15), 12345-12360.es_ES
dcterms.bibliographicCitationBedoya, J., & Martínez, E. (2021). Caracterización de compuestos orgánicos volátiles asociados a material particulado en el Valle de Aburrá, Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 89(1), 45-58. https://doi.org/10.17533/udea.redin.20210184es_ES
datacite.rightshttp://purl.org/coar/access_right/c_abf2es_ES
oaire.resourcetypehttp://purl.org/coar/resource_type/c_7a1fes_ES
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccees_ES
dc.audiencePúblico generales_ES
dc.identifier.instnameUniversidad Marianaes_ES
dc.identifier.reponameRepositorio Clara de Asíses_ES
dc.publisher.placePasto - Nariñoes_ES
dc.publisher.sedeSede 1es_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.subject.keywordsCOMPUESTOS ORGÁNICOS VOLÁTILES (COV), PARTÍCULAS SUSPENDIDAS TOTALES (TSP), EMISIONES ATMORFERICAS, CONCENTRACIONES DE CONTAMINANTES, ESTANDARIZACIÓN, CALIDAD DEL AIRE, EMISIONES VEHICULARESes_ES
dc.type.driverinfo:eu-repo/semantics/bachelorThesises_ES
dc.type.hasversioninfo:eu-repo/semantics/draftes_ES
dc.type.spaArtículoes_ES


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/