Mostrar el registro sencillo del ítem
Evaluación de las concentraciones de Compuestos Orgánicos Volátiles contenidos en el material particulado suspendido en la calle 18 entre las carreras 34ª y 35 de San Juan de Pasto
dc.contributor.author | Bastidas, Harold | |
dc.contributor.author | Espinosa, Andres | |
dc.contributor.author | Pachichana, Alvaro | |
dc.coverage.spatial | Colombia, Nariño, San Juan de Pasto | |
dc.coverage.spatial | Fecha: 2024 | |
dc.date.accessioned | 2025-02-06T18:24:11Z | |
dc.date.available | 2025-02-06T18:24:11Z | |
dc.date.issued | 2023-08-01 | |
dc.date.submitted | 2024-11-27 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/29269 | |
dc.description.abstract | El objetivo de este trabajo de grado se enfoca en analizar las concentraciones de compuestos orgánicos volátiles (COVs) presentes en las partículas suspendidas totales (PST) del aire ambiente de la calle 18, entre las carreras 34a y 35 de San Juan de Pasto. Los COVs son sustancias químicas que contienen carbono y se evaporan fácilmente a temperatura ambiente (Agencia de Protección Ambiental de Estados Unidos, 2023). Son emitidos por una amplia variedad de fuentes, incluyendo procesos industriales, productos de consumo, y vehículos motorizados (Organización Mundial de la Salud, 2021). Las PST actúan como portadores efectivos de COVs en la atmósfera, ya que estos compuestos pueden adsorberse en la superficie de las partículas, alterando tanto sus propiedades físico-químicas como su potencial impacto en la salud (Chen et al., 2022). Esta interacción COV-PST es particularmente relevante en áreas urbanas con alta densidad vehicular, donde ambos contaminantes son emitidos simultáneamente (Wang et al., 2023). Los COVs desempeñan un papel crucial en la formación de ozono troposférico y material particulado secundario, contribuyendo así a la contaminación del aire urbano (Seinfeld y Pandis, 2016). Su permanencia en la atmósfera puede variar desde horas hasta meses, dependiendo de su reactividad química y las condiciones ambientales (Atkinson y Arey, 2003). Cuando estos compuestos se asocian con las PST, su comportamiento ambiental puede modificarse significativamente, aumentando su persistencia en el ambiente y potencialmente su biodisponibilidad en el sistema respiratorio humano (García y Martínez, 2023). El proyecto implica la recolección de muestras de PST en puntos específicos con alta actividad vehicular para evaluar la presencia y concentración de COVs adsorbidos en estas partículas. Posteriormente, en el laboratorio, se analizarán las muestras mediante técnicas de desorción térmica y cromatografía de gases acoplada a espectrometría de masas para determinar el perfil y las concentraciones de los COVs presentes en las PST (Zhang et al., 2022). El objetivo es identificar y cuantificar los COVs asociados a las PST y evaluar si esta forma de contaminación representa un riesgo para la salud pública, particularmente para los estudiantes de la Universidad Mariana y la comunidad en general en esa área. | es_ES |
dc.description.abstract | The objective of this graduate work is focused on analyzing the concentrations of volatile organic compounds (VOCs) present in the total suspended particulate matter (TSP) in the ambient air of 18th Street, between Carreras 34a and 35 in San Juan de Pasto. VOCs are carbon-containing chemicals that evaporate readily at room temperature (U.S. Environmental Protection Agency, 2023). They are emitted from a wide variety of sources, including industrial processes, consumer products, and motor vehicles (World Health Organization, 2021). TSPs act as effective carriers of VOCs in the atmosphere, as these compounds can adsorb on the surface of particles, altering both their physicochemical properties and their potential health impact (Chen et al., 2022). This VOC-PST interaction is particularly relevant in urban areas with high vehicle density, where both pollutants are emitted simultaneously (Wang et al., 2023). VOCs play a crucial role in the formation of tropospheric ozone and secondary particulate matter, thus contributing to urban air pollution (Seinfeld and Pandis, 2016). Their permanence in the atmosphere can vary from hours to months, depending on their chemical reactivity and ambient conditions (Atkinson and Arey, 2003). When these compounds are associated with PSTs, their environmental behavior can be significantly modified, increasing their persistence in the environment and potentially their bioavailability in the human respiratory system (Garcia and Martinez, 2023). The project involves the collection of TSP samples at specific points with high vehicular activity to evaluate the presence and concentration of VOCs adsorbed on these particles. Subsequently, in the laboratory, the samples will be analyzed using thermal desorption techniques and gas chromatography coupled to mass spectrometry to determine the profile and concentrations of VOCs present in the TSPs (Zhang et al., 2022). The objective is to identify and quantify the VOCs associated with TSPs and to assess whether this form of pollution represents a risk to public health, particularly for Marian University students and the general community in that area. | es_ES |
dc.description.tableofcontents | 1. Resumen del proyecto .................................................................................................13 2. Introducción ................................................................................................................14 3. Antecedentes...............................................................................................................16 4. Justificación y Planteamiento del problema................................................................19 4.1 Justificación.........................................................................................................19 4.2 Planteamiento del problema................................................................................20 4.2 Hipótesis..............................................................................................................21 5 Objetivos.....................................................................................................................22 5.1 Objetivo general ..................................................................................................22 5.2 Objetivos específicos ..........................................................................................22 6 Materiales y Métodos..................................................................................................23 6.1 Área de estudio....................................................................................................23 6.2 Descripción de metodologías..............................................................................24 6.2.1 Estandarización del procedimiento para análisis de TSP y COVs..............24 6.2.2 Análisis de partículas TSP y COVs ............................................................25 6.3 Diseño experimental............................................................................................30 6.4 Línea de investigación y área temática ...............................................................31 7 Resultados y discusión ................................................................................................32 7.1 Estandarización del procedimiento de análisis de TSP y (COVs) en aire a partir de métodos de análisis instrumental....................................................................................32 7.2 Análisis Concentración de COVs y TSP..................................................................47 7.3 Relación entre los niveles de concentración de compuestos orgánicos volátiles (COVs) y otras variables ambientalmente determinantes...................................................54 8. Conclusiones...............................................................................................................67 9. Recomendaciones........................................................................................................68 10. Referencias bibliográficas.......................................................................................69 11. Anexos.....................................................................................................................83 | es_ES |
dc.format.extent | 87 paginas. | |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | spa | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Evaluación de las concentraciones de Compuestos Orgánicos Volátiles contenidos en el material particulado suspendido en la calle 18 entre las carreras 34ª y 35 de San Juan de Pasto | es_ES |
dc.title.alternative | EVALUATION OF THE CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS CONTAINED IN SUSPENDED PARTICULATE MATTER ON 18TH STREET BETWEEN CARRERAS 34ª AND 35 IN SAN JUAN DE PASTO. | es_ES |
dcterms.bibliographicCitation | Abdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2013). Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmospheric Environment, 71, 260-294. https://doi.org/10.1016/j.atmosenv.2013.01.061 | es_ES |
dcterms.bibliographicCitation | Agencia de Protección Ambiental de EE. UU. (EPA). (1999). Compendium method TO-13A: Determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography/mass spectrometry (GC/MS). https://www.epa.gov/sites/production/files/2015-07/documents/to-13arv.pdf. | es_ES |
dcterms.bibliographicCitation | Agencia de Protección Ambiental de Estados Unidos (EPA). (2014). "Aire Exterior: Muestreo de la Calidad del Aire". Recuperado de: https://www.epa.gov/outdoor-air-quality-data/outdoor-air quality-data-monitor-values | es_ES |
dcterms.bibliographicCitation | Agencia de Protección Ambiental de Estados Unidos (EPA). (2016). "Sampling of Ambient Air for Total Suspended Particulate Matter (SPM and TSP)". Recuperado de: https://www.epa.gov/sites/default/files/2015-07/documents/epa-io-2.1.pdf | es_ES |
dcterms.bibliographicCitation | Agencia de Protección Ambiental de Estados Unidos (EPA). (2016). "Sampling of Ambient Air for Total Suspended Particulate Matter (SPM and TSP)". Recuperado de: https://www.epa.gov/sites/default/files/2015-07/documents/epa-io-2.1.pdf | es_ES |
dcterms.bibliographicCitation | Agencia de Protección Ambiental de Estados Unidos. (2023). Compuestos orgánicos volátiles: Definición e impacto en la calidad del aire interior. https://www.epa.gov/indoor-air-quality iaq/volatile-organic-compounds-impact-indoor-air-quality | es_ES |
dcterms.bibliographicCitation | Agencia Europea de Medio Ambiente. (2020). Air quality in Europe — 2020 report. https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report | es_ES |
dcterms.bibliographicCitation | Air Quality, Energy and Health (AQE). (2010, 1 enero). WHO guidelines for indoor air quality: selected pollutants. https://www.who.int/publications/i/item/9789289002134 | es_ES |
dcterms.bibliographicCitation | Alberto, M. P. L. (2023, 1 febrero). Evaluación de la concentración de material particulado en el área de ensacado de harina en la empresa Industrias Catedral S.A. https://repositorio.uta.edu.ec/jspui/handle/123456789/38487 | es_ES |
dcterms.bibliographicCitation | Alghamdi, M. A., Khoder, M., Harrison, R. M., Hyvärinen, A. P., Hussein, T., Al-Jeelani, H., Abdelmaksoud, A. S., Goknil, M. H., Shabbaj, I. I., Almehmadi, F. M., Lihavainen, H., Kulmala, M., & Hämeri, K. (2014). Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Quality, Atmosphere & Health, 7(4), 467-480. https://doi.org/10.1007/s11869-014-0263-x | es_ES |
dcterms.bibliographicCitation | Alghamdi, M. A., Khoder, M., Harrison, R. M., Hyvärinen, A. P., Hussein, T., Al-Jeelani, H., Abdelmaksoud, A. S., Goknil, M. H., Shabbaj, I. I., Almehmadi, F. M., Lihavainen, H., Kulmala, M., & Hämeri, K. (2021). Temporal variations of O3 and NOx in the urbanbackground atmosphere of the coastal city Jeddah, Saudi Arabia. Atmospheric Environment, 244, 117911. https://doi.org/10.1016/j.atmosenv.2020.117911 | es_ES |
dcterms.bibliographicCitation | ality. Retrieved from https://www.epa.gov/indoor-air-quality-iaq/volatile-organic compounds-impact-indoor-air-quality Anemometer. (s. f.). Scribd. https://es.scribd.com/doc/131184108/Anemometer | es_ES |
dcterms.bibliographicCitation | Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34(12- 14), 2063-2101. https://doi.org/10.1016/S1352-2310(99)00460-4 | es_ES |
dcterms.bibliographicCitation | Atkinson, R., & Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 37(2), 197-219. https://doi.org/10.1016/S1352-2310(03)00391-1 | es_ES |
dcterms.bibliographicCitation | Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., & Troe, J. (2006). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species. Atmospheric Chemistry and Physics, 6(11), 3625-4055. https://doi.org/10.5194/acp-6-3625-2006 | es_ES |
dcterms.bibliographicCitation | Atkinson, R., y Arey, J. (2003). Atmospheric degradation of volatile organic compounds. Chemical Reviews, 103(12), 4605-4638. https://doi.org/10.1021/cr0206420 | es_ES |
dcterms.bibliographicCitation | Baker, R. C. (2016). Flow measurement handbook: Industrial designs, operating principles, performance, and applications (2nd ed.). Cambridge University Pres | es_ES |
dcterms.bibliographicCitation | Balanza analítica AS 220.R2 PLUS. (2024, 7 mayo). RADWAG Balanzas Electrónicas. https://radwag.com/es/balanza-analitica-as-220-r2-plus,w1,ZAE,101-101-125-100 | es_ES |
dcterms.bibliographicCitation | Bari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of The Total Environment, 631-632, 627-640. https://doi.org/10.1016/j.scitotenv.2018.03.023 | es_ES |
dcterms.bibliographicCitation | Bari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of The Total Environment, 631- 632, 627-640. https://doi.org/10.1016/j.scitotenv.2018.03.023 | es_ES |
dcterms.bibliographicCitation | Benavides, I. (2019, 30 septiembre). Calidad del aire en Pasto no es la mejor de Colombia | Udenar Periódico. Udenar Periódico. https://periodico.udenar.edu.co/calidad-del-aire en-pasto-no-es-la-mejor-de-colombia/ | es_ES |
dcterms.bibliographicCitation | Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., & Pilling, M. J. (2005). Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmospheric Chemistry and Physics, 5(3), 641-664. https://doi.org/10.5194/acp-5-641-2005 | es_ES |
dcterms.bibliographicCitation | Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The lancet, 360(9341), 1233-1242. https://doi.org/10.1016/S0140-6736(02)11274-8 | es_ES |
dcterms.bibliographicCitation | Cao, X. L. (2010). Phthalate esters in foods: Sources, occurrence, and analytical methods. *Comprehensive Reviews in Food Science and Food Safety*, 9(1), 21-43. https://doi.org/10.1111/j.1541-4337.2009.00093.x | es_ES |
dcterms.bibliographicCitation | Cerón, J. G., Cerón, R. M., Adelaida, C. R., Ramírez, E., Rangel, M., Estrella, A., & Montalvo, C. (2014). Diurnal and seasonal variations of carbonyls and their effect on ozone and PM2.5 in the atmosphere of Monterrey, Mexico. Atmosphere, 5(2), 273-291. https://doi.org/10.3390/atmos5020273 | es_ES |
dcterms.bibliographicCitation | Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: Cooking emissions. Environmental Science & Technology, 50(3), 1243- 1250. https://doi.org/10.1021/acs.est.5b04618 | es_ES |
dcterms.bibliographicCitation | Chen, L., & Wong, K. (2021). Urban air quality assessment: Correlations between volatile organic compounds and particulate matter. Environmental Science & Technology, 55(15), 9876-9885. https://doi.org/10.1021/acs.est.1c02468 | es_ES |
dcterms.bibliographicCitation | Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., ... & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907-1918. https://doi.org/10.1016/S0140-6736(17)30505-6 | es_ES |
dcterms.bibliographicCitation | Cohen, B. S. y Hering, S. V. (1995). Air sampling instruments for evaluation of atmospheric contaminants (9a ed.). American Conference of Governmental Industrial Hygienists. | es_ES |
dcterms.bibliographicCitation | compounds at a roadside environment in Hong Kong: An investigation of emissions from traffic and nearby businesses. Atmospheric Environment, 219, 117025. https://doi.org/10.1016/j.atmosenv.2019.117025 | es_ES |
dcterms.bibliographicCitation | Cortes, J., González, C. M., Morales, L., Abalos, M., Abad, E., & Aristizábal, B. H. (2021). Air pollutants and their correlation with volatile organic compounds in ambient air of different areas in Medellín, Colombia. *Atmospheric Pollution Research*, 12(3), 100-109. https://doi.org/10.1016/j.apr.2021.01.003 | es_ES |
dcterms.bibliographicCitation | Costa, L. G. (1996). Biomarker research in neurotoxicology: The role of mechanistic studies to bridge the gap between the laboratory and epidemiological investigations. *Environmental Health Perspectives*, 104(Suppl 1), 55-67. https://doi.org/10.1289/ehp.96104s155 | es_ES |
dcterms.bibliographicCitation | Dekant, W., & Klaunig, J. E. (2016). Toxicology of decamethylcyclopentasiloxane (D5). *Regulatory Toxicology and Pharmacology*, 74, S67-S76. https://doi.org/10.1016/j.yrtph.2015.06.011 | es_ES |
dcterms.bibliographicCitation | Dettmer-Wilde, K., & Engewald, W. (Eds.). (2014). Practical gas chromatography: A comprehensive reference. Springer. | es_ES |
dcterms.bibliographicCitation | Directive - 2004/42 - EN - Decopaint Directive - EUR-Lex. (s. f.). https://eur-lex.europa.eu/legal content/EN/ALL/?uri=celex%3A32004L004 | es_ES |
dcterms.bibliographicCitation | Directive - 2010/75 - EN - EUR-LEX. (s. f.). https://eur-lex.europa.eu/legal content/EN/TXT/?uri=CELEX%3A32010L0075&qid=172253060970 | es_ES |
dcterms.bibliographicCitation | DSpace. (s. f.). https://bonga.unisimon.edu.co/bitstream/handle/20.500.12442/7985/Gu%C3%ADa% 20de%20Cromatograf%C3%ADa%20liquida%20de%20alto%20rendimiento%28HP LC%29%20y%20Cromatograf%C3%ADa%20de%20gases%20%28CG%29.pdf?isA llowed=y&sequence=1 | es_ES |
dcterms.bibliographicCitation | Dumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T., & Bayram, A. (2014). Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmospheric Environment, 98, 168-178. https://doi.org/10.1016/j.atmosenv.2014.08.048 | es_ES |
dcterms.bibliographicCitation | Environmental Protection Agency (EPA). (2022). Toluene. Integrated Risk Information System (IRIS). https://iris.epa.gov/ChemicalLanding/&substance_nmbr=118 | es_ES |
dcterms.bibliographicCitation | EPA (Agencia de Protección Ambiental de los Estados Unidos). (2022). Hexane. https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants | es_ES |
dcterms.bibliographicCitation | Filley, C. M., Halliday, W., & Kleinschmidt-DeMasters, B. K. (2004). The effects of toluene on the central nervous system. *Journal of Neuropathology & Experimental Neurology*, 63(1), 1- 12. https://doi.org/10.1093/jnen/63.1.1 | es_ES |
dcterms.bibliographicCitation | Fullana, A., Carbonell-Barrachina, A. A., & Sidhu, S. (2004). Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. Journal of Agricultural and Food Chemistry, 52(16), 5207-5214. https://doi.org/10.1021/jf035241f | es_ES |
dcterms.bibliographicCitation | Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J., Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H., & Robinson, A. L. (2017). Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. Environmental Science & Technology, 51(3), 1074-1093. https://doi.org/10.1021/acs.est.6b04509 | es_ES |
dcterms.bibliographicCitation | Gu, Y., Li, Q., Wei, D., Gao, L., Tan, L., Su, G., Liu, G., Liu, W., Li, C., & Wang, Q. (2019). Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China. Ecotoxicology and Environmental Safety, 169, 797-806. https://doi.org/10.1016/j.ecoenv.2018.11.091 | es_ES |
dcterms.bibliographicCitation | Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471-1492. https://doi.org/10.5194/gmd-5-1471- 2012 | es_ES |
dcterms.bibliographicCitation | Guerrero, J. A., Rodríguez, Y. A., & Arciniegas, A. (2019). Evaluación de la calidad del aire en la ciudadGG de Pasto, Colombia: Un enfoque en contaminantes criterio y compuestos orgánicos volátiles. Revista de la Facultad de Ciencias, 8(2), 45-60. | es_ES |
dcterms.bibliographicCitation | Guo, H., Chen, K., Wang, P., Hu, J., Ying, Q., Gao, A., & Zhang, H. (2020). Simulation of summer ozone and its sensitivity to emission changes in China. Atmospheric Pollution Research, 11(6), 1253-1261. https://doi.org/10.1016/j.apr.2020.04.013 | es_ES |
dcterms.bibliographicCitation | Guo, H., et al. (2020). Source apportionment of volatile organic compounds in urban and rural atmospheres in China. Journal of Environmental Sciences. | es_ES |
dcterms.bibliographicCitation | Guo, H., Ling, Z. H., Cheng, H. R., Cheung, K., Zheng, C., Wang, D. W., Li, Y. J., Jiang, F., Biswas, H. K., Hao, Y. F., & Yu, Y. F. (2020). Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong. Atmospheric Chemistry and Physics, 20(1), 181-200. https://doi.org/10.5194/acp-20-181-2020 | es_ES |
dcterms.bibliographicCitation | Guo, H., Ling, Z. H., Cheng, H. R., Simpson, I. J., Lyu, X. P., Wang, X. M., Shao, M., Lu, H. X., Ayoko, G., Zhang, Y. L., Saunders, S. M., Lam, S. H. M., Wang, J. L., & Blake, D. R. (2020). Tropospheric volatile organic compounds in China. Science of The Total Environment, 701, 134631. https://doi.org/10.1016/j.scitotenv.2019.134631 | es_ES |
dcterms.bibliographicCitation | Guo, S., Hu, M., Guo, Q., Zhang, X., Schauer, J. J., & Zhang, R. (2013). Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmospheric Chemistry and Physics, 13(16), 8303-8314. https://doi.org/10.5194/acp-13-8303-2013 | es_ES |
dcterms.bibliographicCitation | Harper, M. (2000). Sorbent trapping of volatile organic compounds from air. Journal of Chromatography. Sorbent trapping of volatile organic compounds from air - ScienceDirect | es_ES |
dcterms.bibliographicCitation | Harris, D. C. (2007). Análisis químico cuantitativo (3ra ed.). Reverté. | es_ES |
dcterms.bibliographicCitation | He, L., Zhang, S., Hu, J., Li, Z., Zheng, X., Cao, Y., Xu, G., Yan, M., & Wu, Y. (2021). On-road emission measurements of reactive volatile organic compounds from heavy-duty diesel trucks in China. Environmental Pollution, 285, 117440. https://doi.org/10.1016/j.envpol.2021.117440 | es_ES |
dcterms.bibliographicCitation | Hellén, H., Schallhart, S., Praplan, A. P., Tykkä, T., Aurela, M., Lohila, A., & Hakola, H. (2021). Sesquiterpenes dominate monoterpenes in northern wetland emissions. Atmospheric Chemistry and Physics, 21(11), 8775–8807. https://doi.org/10.5194/acp-21-8775-2021 | es_ES |
dcterms.bibliographicCitation | Hellén, H., Tykkä, T., & Hakola, H. (2018). Importance of monoterpenes and isoprene in urban air in northern Europe. Atmospheric Environment, 59, 59-66. https://doi.org/10.1016/j.atmosenv.2012.04.049 | es_ES |
dcterms.bibliographicCitation | Heudorf, U., Mersch-Sundermann, V., & Angerer, J. (2007). Phthalates: Toxicology and exposure. *International Journal of Hygiene and Environmental Health*, 210(5), 623-634. https://doi.org/10.1016/j.ijheh.2007.07.011 | es_ES |
dcterms.bibliographicCitation | Hinks, M. L., Montoya-Aguilera, J., Ellison, L., Lin, P., Laskin, A., Laskin, J., Shiraiwa, M., Dabdub, D., & Nizkorodov, S. A. (2018). Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene. Atmospheric Chemistry and Physics, 18(3), 1643-1652. https://doi.org/10.5194/acp-18-1643-2018 | es_ES |
dcterms.bibliographicCitation | IARC Publications Website - IARC Monographs on the Identification of Carcinogenic Hazards to Humans. (s. f.). https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs On-The-Identification-Of-Carcinogenic-Hazards-To-Humans | es_ES |
dcterms.bibliographicCitation | JC MEDICAL SUPPLIES. (2024, 8 marzo). TERMOHIGRÓMETRO TA218C WMETERS. JC Medical Supplies. https://www.jcmedicalsupplies.com/producto/termohigrometro_ta218c/#:~:text=Le% 20permitir%C3%A1%20comprobar%20el%20nivel,m%C3%ADnima%20en%20los %20dos%20casos. | es_ES |
dcterms.bibliographicCitation | Jiang, N., Duan, S., Yu, X., Zhang, R., & Wang, K. (2017). Comparative major components and health risks of toxic elements and polycyclic aromatic hydrocarbons of PM2.5 in winter and summer in Zhengzhou: Based on three-year data. Atmospheric Research, 191, 1-10. https://doi.org/10.1016/j.atmosres.2017.02.014 | es_ES |
dcterms.bibliographicCitation | Khoder, M. I. (2007). Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmospheric Environment, 41(3), 554-566. https://doi.org/10.1016/j.atmosenv.2006.08.051 | es_ES |
dcterms.bibliographicCitation | Kim, K. H., et al. (2019). Volatile organic compounds in ambient air: Sources and implications on public health. Critical Reviews in Environmental Science and Technology. | es_ES |
dcterms.bibliographicCitation | Klein, F., Platt, S. M., Farren, N. J., Detournay, A., Bruns, E. A., Bozzetti, C., Daellenbach, K. R., Kilic, D., Kumar, N. K., Pieber, S. M., Slowik, J. G., Temime-Roussel, B., Marchand, N., Hamilton, J. F., Baltensperger, U., Prévôt, A. S. H., & El Haddad, I. (2016). | es_ES |
dcterms.bibliographicCitation | Knothe, G. (2008). "Designer" biodiesel: Optimizing fatty ester composition to improve fuel properties. *Energy & Fuels*, 22(2), 1358-1364. https://doi.org/10.1021/ef700639e | es_ES |
dcterms.bibliographicCitation | Kumar, A., Singh, D., Kumar, K., Singh, B. B., & Jain, V. K. (2023). Distribution of BTEX in the ambient air of Delhi: Long-term observations and source characterization. Atmospheric Pollution Research, 14(2), 101656. https://doi.org/10.1016/j.apr.2022.101656 | es_ES |
dcterms.bibliographicCitation | Latini, G., De Felice, C., & Verrotti, A. (2004). Plasticizers, infant nutrition and reproductive health. *Reproductive Toxicology*, 19(1), 27-33. https://doi.org/10.1016/j.reprotox.2004.05.011 | es_ES |
dcterms.bibliographicCitation | Lechner, M., Pinto, A. N., Schneider-Reiß, K., & Püttmann, W. (2020). Occurrence and ecological risk assessment of fatty acid methyl esters (FAMEs) in German river systems. *Environmental Science & Technology*, 54(8), 4916-4923. https://doi.org/10.1021/acs.est.9b07276 | es_ES |
dcterms.bibliographicCitation | Legreid, G., Lööv, J. B., Staehelin, J., Hueglin, C., Hill, M., Buchmann, B., Prevot, A. S. H., & Reimann, S. (2007). Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zürich (Europe): Seasonal variation and source allocation. Atmospheric Environment, 41(38), 8409-8423. https://doi.org/10.1016/j.atmosenv.2007.07.026 | es_ES |
dcterms.bibliographicCitation | Li, Y., Schwab, J. J., & Demerjian, K. L. (2019). Measurements of ambient volatile organic compounds at two suburban sites in New York State. Journal of the Air & Waste Management Association, 69(10), 1188-1202. https://doi.org/10.1080/10962247.2019.1640803 | es_ES |
dcterms.bibliographicCitation | Lim, Y. B., Kim, H., Kim, J. Y., & Bae, G. N. (2014). Photochemical production of ozone and secondary organic aerosol from gasoline-vehicle exhaust. *Environmental Science & Technology*, 48(16), 9952-9960. https://doi.org/10.1021/es502321j | es_ES |
dcterms.bibliographicCitation | Liu, Y., Wang, H., Jing, S., Gao, Y., Peng, Y., Lou, S., Cheng, T., Tao, S., Li, L., Li, Y., Huang, D., Wang, Q., & An, J. (2020). Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport. Atmospheric Environment, 237, 117740. https://doi.org/10.1016/j.atmosenv.2020.117740 | es_ES |
dcterms.bibliographicCitation | Marć, M., Bielawska, M., Simeonov, V., Namieśnik, J., & Zabiegała, B. (2015). The effect of anthropogenic activity on BTEX, NO2, SO2, and CO concentrations in urban air of the spa city of Sopot and medium-industrialized city of Tczew located in North Poland. Environmental Research, 147, 513-524. https://doi.org/10.1016/j.envres.2016.03.014 | es_ES |
dcterms.bibliographicCitation | Martí-Cid, R., Bocio, A., Guardia, M., & Massagué, J. (2008). Determinación de hidrocarburos aromáticos policíclicos en muestras de alimentos de origen vegetal y animal mediante cromatografía de gases-espectrometría de masas. Trazas, 49, 1-23. | es_ES |
dcterms.bibliographicCitation | Martínez, J., García, L., & Fernández, R. (2024). Análisis de correlaciones entre contaminantes atmosféricos en zonas urbanas. Atmospheric Environment, 203, 117-129. https://doi.org/10.1016/j.atmosenv.2024.01.015 | es_ES |
dcterms.bibliographicCitation | Martins, E. M., Nunes, A. C. L., & Correa, S. M. (2021). Understanding Ozone Formation in an Urban Environment in Brazil. Environments, 8(2), 11. https://doi.org/10.3390/environments8020011 | es_ES |
dcterms.bibliographicCitation | McNair, H. M., Miller, J. M., & Snow, N. H. (2019). Basic gas chromatography (3rd ed.). John Wiley & Sons. | es_ES |
dcterms.bibliographicCitation | Meléndez, I., Quijano, M., & Quijano, A. (2016). Estudio preliminar de la concentración de hidrocarburos aromáticos policíclicos en el material particulado respirable (PM10) de Barranquilla, Colombia. Prospectiva, 14(1), 70-78 | es_ES |
dcterms.bibliographicCitation | Ministerio para la Transición Ecológica y el Reto Demográfico. (s.f.). Compuestos orgánicos volátiles. https://www.miteco.gob.es/es/calidad-y-evaluacion ambiental/temas/atmosfera-y-calidad-del-aire/emisiones/act emis/compuestos_organicos_volatiles.html | es_ES |
dcterms.bibliographicCitation | OMS. (2021). Calidad del aire y salud. https://www.who.int/teams/environment-climate-change-and health/air-quality-and-healt | es_ES |
dcterms.bibliographicCitation | Organización Mundial de la Salud (OMS). (2005). "Calidad del aire interior: riesgos para la salud en el hogar y en el trabajo". Recuperado de: https://www.who.int/publications/i/item/9241563259 | es_ES |
dcterms.bibliographicCitation | Organización Mundial de la Salud (OMS). (2020). Hidrocarburos aromáticos policíclicos y cáncer. https://www.who.int/es/news-room/fact-sheets/detail/polycyclic-aromatic-hydrocarbons-and cancer | es_ES |
dcterms.bibliographicCitation | Organización Panamericana de la Salud (OPS) & Organización Mundial de la Salud (OMS). (s.f.). Calidad del aire ambiente. https://www.paho.org/es/temas/calidad-aire-ambiente | es_ES |
dcterms.bibliographicCitation | Ortega, L. F., & Bravo, M. C. (2020). Exposición ocupacional a compuestos orgánicos volátiles en talleres de pintura automotriz de Pasto, Nariño. Revista de Salud Pública, 22(3), 1-9. | es_ES |
dcterms.bibliographicCitation | Pöschl, U., & Shiraiwa, M. (2015). Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chemical Reviews, 115(10), 4440-4475. https://doi.org/10.1021/cr500487s | es_ES |
dcterms.bibliographicCitation | Ramírez, N., Cuartas, D. E., & Lizcano, A. (2018). Evaluación de la exposición a BTEX en trabajadores de estaciones de servicio de combustible en Bogotá. Revista de Salud Pública, 20(1), 53-59. | es_ES |
dcterms.bibliographicCitation | Ramírez, V., Sarmiento, R., Lobo, M. y Roa, LA (2012). Niveles de benceno, tolueno y xileno en el aire de la ciudad de Bogotá y sus efectos en la salud humana. Revista de Salud Pública, 14(5), 858-870. | es_ES |
dcterms.bibliographicCitation | Resolución 2254 de 2017. Por la cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones. Ministerio de Ambiente y Desarrollo Sostenible. http://www.ideam.gov.co/documents/51310/527391/2.+Resoluci%C3%B3n+2254+de+2017 +-+Niveles+Calidad+del+Aire..pdf/c22a285e-058e-42b6-aa88-2745fafad39f | es_ES |
dcterms.bibliographicCitation | Ruiz Abad, J. F., Belalcázar, L. C., & Ceballos, J. (2018). Concentraciones de Hidrocarburos Aromáticos Policíclicos (HAP) en el material particulado fino (PM2.5) en Pasto, Colombia. Revista Logos Ciencia & Tecnología, 10(2), 87-97. https://doi.org/10.22335/rlct.v10i2.624 | es_ES |
dcterms.bibliographicCitation | Sahu, L. K., & Saxena, P. (2015). High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: Role of anthropogenic, biomass burning, biogenic and photochemical sources. Atmospheric Research, 164-165, 84-94. https://doi.org/10.1016/j.atmosres.2015.04.021 | es_ES |
dcterms.bibliographicCitation | Salameh, T., Sauvage, S., Afif, C., Borbon, A., & Locoge, N. (2021). Harmonized Source Apportionment of Volatile Organic Compounds and Sensitivity to the Selection of Input Parameters: An Inter-Model Comparison Exercise. Atmosphere, 12(3), 373. https://doi.org/10.3390/atmos12030373 | es_ES |
dcterms.bibliographicCitation | Salthammer, T. (2016). Very volatile organic compounds: an understudied class of indoor air pollutants. Indoor Air, 26(1), 25-38. https://pubmed.ncbi.nlm.nih.gov/25471461/ | es_ES |
dcterms.bibliographicCitation | Salthammer, T., et al. (2018). Occurrence and sources of semi-volatile organic compounds in indoor air. | es_ES |
dcterms.bibliographicCitation | Seinfeld, J. H., y Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change (3ª ed.). John Wiley & Sons. https://books.google.com.co/books?id=n_RmCgAAQBAJ&lpg=PR1&hl=es&pg=PA345#v= onepage&q&f=false | es_ES |
dcterms.bibliographicCitation | Shi, X., Zhao, Y., Zhang, R., He, C., & Wang, X. (2022). Characterization of volatile organic compounds and their sources in urban environments: A review. Environmental Pollution, 292, 118446. https://doi.org/10.1016/j.envpol.2021.118446 | es_ES |
dcterms.bibliographicCitation | Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J., Barratt, B., ... Zheng, M. (2020). Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH Beijing)". Atmospheric Chemistry and Physics, 20(3), 1809-1825. https://doi.org/10.5194/acp-20-1809-2020 | es_ES |
dcterms.bibliographicCitation | Skoog, DA, Holler, FJ y Crouch, SR (2014). Principios de análisis instrumental (6ª ed.). Cengage.https://www.academia.edu/36784861/Principios_de_Analisis_Instrumental_ Skoog_6ta_pdf | es_ES |
dcterms.bibliographicCitation | Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z., Xie, S., Zeng, L., & Zhang, Y. (2021). Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: A case study based on box model simulation. Atmospheric Chemistry and Physics, 21(18), 13781-13798. https://doi.org/10.5194/acp-21-13781-2021 | es_ES |
dcterms.bibliographicCitation | Tie, X., Brasseur, G., Emmons, L., Horowitz, L., & Kinnison, D. (2003). Effects of aerosols on tropospheric oxidants: A global model study. Journal of Geophysical Research: Atmospheres, 106(D22), 22931-22964. https://doi.org/10.1029/2001JD900206 | es_ES |
dcterms.bibliographicCitation | U.S. Environmental Protection Agency. (2022). Criteria air pollutants. https://www.epa.gov/criteria air-pollutants. | es_ES |
dcterms.bibliographicCitation | U.S. EPA. (2022). Volatile Organic Compounds' Impact on Indoor Air Qu Vallero, D. A. (2014). "Air Pollution Sampling Techniques". En: "Fundamentals of Air Pollution" (pp. 261-292). Academic Press. | es_ES |
dcterms.bibliographicCitation | Volkamer, R., Baidar, S., Campos, T. L., Coburn, S., DiGangi, J. P., Dix, B., Eloranta, E. W., Koenig, T. K., Morley, B., Ortega, I., Pierce, B. R., Reeves, M., Sinreich, R., Wang, S., Zondlo, M. A., & Romashkin, P. A. (2017). Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements. Atmospheric Measurement Techniques, 8(5), 2121-2148. https://doi.org/10.5194/amt-8-2121-2015 | es_ES |
dcterms.bibliographicCitation | Von Lau, E., Gan, S., & Ng, H. K. (2010). Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils. International Journal Of Analytical Chemistry, 2010, 1-9. https://doi.org/10.1155/2010/398381 | es_ES |
dcterms.bibliographicCitation | Wagner, P., & Kuttler, W. (2014). Biogenic and anthropogenic isoprene in the near-surface urban atmosphere — A case study in Essen, Germany. Science of The Total Environment, 475, 104- 115. https://doi.org/10.1016/j.scitotenv.2013.12.026 | es_ES |
dcterms.bibliographicCitation | Wang, G., Cheng, S., Wei, W., Zhou, Y., Yao, S., & Zhang, H. (2016). Characteristics and source apportionment of VOCs in the suburban area of Beijing, China. Atmospheric Pollution Research, 7(4), 711-724. https://doi.org/10.1016/j.apr.2016.03.006 | es_ES |
dcterms.bibliographicCitation | Woolfenden, E. (2010). Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. https://www.sciencedirect.com/science/article/abs/pii/S0021967309018470 | es_ES |
dcterms.bibliographicCitation | World Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://www.who.int/publications/i/item/9789240034228 | es_ES |
dcterms.bibliographicCitation | Xu, J., Griffin, R. J., Liu, Y., Nakao, S., & Cocker III, D. R. (2020). Simulated impact of NOx on SOA formation from oxidation of toluene and m-xylene. Atmospheric Environment, 244, 117914. https://doi.org/10.1016/j.atmosenv.2020.117914 | es_ES |
dcterms.bibliographicCitation | Xue, L., Wang, T., Gao, J., Ding, A., Zhou, X., Blake, D. R., Wang, X., Saunders, S. M., Fan, S., Zuo, H., Zhang, Q., & Wang, W. (2022). Increasing summer and winter ozone pollution in Chinafrom 2013 to 2020: Evidence from ground observations. Science Bulletin, 67(3), 248-256. https://doi.org/10.1016/j.scib.2021.10.022 | es_ES |
dcterms.bibliographicCitation | Yan, C., Nie, W., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli, P., Junninen, H., Jokinen, T., Sarnela, N., Häme, S. A. K., Schobesberger, S., Canonaco, F., Yao, L., Prévôt, A. S. H., Petäjä, T., Kulmala, M., Sipilä, M., Worsnop, D. R., & Ehn, M. (2022). Source characterization of atmospheric organic aerosol using high-resolution mass spectrometry. Progress in Earth and Planetary Science, 9(1), 24. https://doi.org/10.1186/s40645-022-00483-6 | es_ES |
dcterms.bibliographicCitation | Yan, Y., Tham, Y. J., Liu, C., Wu, C., Xie, M., Wang, X., Wang, T., & Li, S. (2023). Multiphase Formation of Nitrated Phenols in the Polluted Atmosphere: Insights into the Contributions of Different Formation Pathways. Environmental Science & Technology, 57(4), 1765-1775. https://doi.org/10.1021/acs.est.2c08489 | es_ES |
dcterms.bibliographicCitation | Zárate, E., Belalcázar, L. C., Clappier, A., Manzi, V., & Van Den Bergh, H. (2007). Air quality modelling over Bogota, Colombia: Combined techniques to estimate and evaluate emission inventories. Atmospheric Environment, 41(29), 6302-6318. https://doi.org/10.1016/j.atmosenv.2007.03.011 | es_ES |
dcterms.bibliographicCitation | Zhang, Y., Li, R., Fu, H., Chen, J., & Kawamura, K. (2020). Molecular characterization of ambient organic aerosol in urban Shanghai during summer: Implications for secondary organic aerosol formation. Atmospheric Chemistry and Physics, 20(24), 15907-15927. https://doi.org/10.5194/acp-20-15907-2020 | es_ES |
dcterms.bibliographicCitation | Zhang, Y., Li, R., Fu, H., Zhou, D., & Chen, J. (2018). Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. Journal of Environmental Sciences, 71, 233-248. https://doi.org/10.1016/j.jes.2018.05.027 | es_ES |
dcterms.bibliographicCitation | Zhang, Y., Yang, W., Simpson, I., Huang, X., Yu, J., Huang, Z., Wang, Z., Zhang, Z., Liu, D., Huang, Z., Wang, Y., Pei, C., Shao, M., Blake, D. R., Zheng, J., Huang, Z., & Liu, X. (2018). Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China. Environmental Pollution, 233, 806-819. https://doi.org/10.1016/j.envpol.2017.10.133 | es_ES |
dcterms.bibliographicCitation | Zhang, Y., Yang, X., Brown, R., Yang, L., Morawska, L., Ristovski, Z., Fu, Q., & Huang, C. (2020). Shipping emissions and their impacts on air quality in China. Science of The Total Environment, 743, 140699. https://doi.org/10.1016/j.scitotenv.2020.140699 | es_ES |
dcterms.bibliographicCitation | Zheng, H., Kong, S., Yan, Y., Chen, N., Yao, L., Liu, X., Wu, F., Cheng, Y., Niu, Z., Zheng, S., Zeng, X., Yan, Q., Wu, J., Zheng, M., Liu, D., Zhao, D., & Qi, S. (2021). Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Science of The Total Environment, 765, 142741. https://doi.org/10.1016/j.scitotenv.2020.142741 | es_ES |
dcterms.bibliographicCitation | García, M., & Martínez, R. (2023). Enhanced persistence of VOCs through particle-bound mechanisms in urban environments. Atmospheric Environment, 203, 117-128. | es_ES |
dcterms.bibliographicCitation | Hernández, A., & López, M. (2023). Modification of VOC bioavailability through particle-binding mechanisms in urban environments. Environmental Science & Pollution Research, 30(15), 12345-12360. | es_ES |
dcterms.bibliographicCitation | Bedoya, J., & Martínez, E. (2021). Caracterización de compuestos orgánicos volátiles asociados a material particulado en el Valle de Aburrá, Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 89(1), 45-58. https://doi.org/10.17533/udea.redin.20210184 | es_ES |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | es_ES |
oaire.resourcetype | http://purl.org/coar/resource_type/c_7a1f | es_ES |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | es_ES |
dc.audience | Público general | es_ES |
dc.identifier.instname | Universidad Mariana | es_ES |
dc.identifier.reponame | Repositorio Clara de Asís | es_ES |
dc.publisher.place | Pasto - Nariño | es_ES |
dc.publisher.sede | Sede 1 | es_ES |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.subject.keywords | COMPUESTOS ORGÁNICOS VOLÁTILES (COV), PARTÍCULAS SUSPENDIDAS TOTALES (TSP), EMISIONES ATMORFERICAS, CONCENTRACIONES DE CONTAMINANTES, ESTANDARIZACIÓN, CALIDAD DEL AIRE, EMISIONES VEHICULARES | es_ES |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | es_ES |
dc.type.hasversion | info:eu-repo/semantics/draft | es_ES |
dc.type.spa | Artículo | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ingeniería Ambiental [32]