Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorMayorca-Torres D.
dc.contributor.authorLeón-Salas A.J.
dc.contributor.authorPeluffo-Ordoñez D.H.
dc.contributor.editorBotto-Tobar M.
dc.contributor.editorGómez O.S.
dc.contributor.editorRosero Miranda R.
dc.contributor.editorLuna-Encalada W.
dc.contributor.editorDíaz Cadena A.
dc.contributor.other4th International Conference on Advances in Emerging Trends and Technologies, ICAETT 2022
dc.date.accessioned2024-12-02T20:16:06Z
dc.date.available2024-12-02T20:16:06Z
dc.date.issued2023
dc.identifier.isbn978-303125941-8
dc.identifier.issn23673370
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29022
dc.description.abstractIn the reverse electrocardiography (ECG) problem, the objective is to reconstruct the heart’s electrical activity from a set of body surface potentials by solving the direct model and the geometry of the torso. Over the years, researchers have used various approaches to solve this problem, from direct, iterative, probabilistic, and those based on deep learning. The interest of the latter, among the wide range of techniques, is because the complexity of the problem can be significantly reduced while increasing the precision of the estimation. In this article, we evaluate the performance of a deep learning-based neural network compared to the Tikhonov method of zero order (ZOT), first (FOT), and second (SOT). Preliminary results show an improvement in performance over real data when Pearson’s correlation coefficient (CC) and (RMSE) are calculated. The CC’s mean value and standard deviation for the proposed method were 0.960 (0.065), well above ZOT, which was 0.864 (0.047). © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.description.sponsorshipThe authors would like to acknowledge the valuable support given by the SDAS Research Group (https://sdas-group.com/).
dc.format8
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceLecture Notes in Networks and Systems
dc.sourceLect. Notes Networks Syst.
dc.sourceScopus
dc.titleNeural Networks on Noninvasive Electrocardiographic Imaging Reconstructions: Preliminary Results
datacite.contributorUniversidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia
datacite.contributorDepartamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
datacite.contributorModeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco
datacite.contributorMayorca-Torres D., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia, Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
datacite.contributorLeón-Salas A.J., Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
datacite.contributorPeluffo-Ordoñez D.H., Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco
datacite.contributor4th International Conference on Advances in Emerging Trends and Technologies, ICAETT 2022
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonD. Mayorca-Torres
dc.contributor.contactpersonUniversidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia
dc.contributor.contactpersonemail: hayala@umariana.edu.co
dc.contributor.sponsorShandong Academy of Sciences, SDAS
dc.identifier.doi10.1007/978-3-031-25942-5_5
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85151059805&doi=10.1007%2f978-3-031-25942-5_5&partnerID=40&md5=94cec4c232e53fa3c491aa3c9d0a36d7
dc.relation.citationendpage63
dc.relation.citationstartpage55
dc.relation.citationvolume619 LNNS
dc.relation.conferencedate26 October 2022 through 28 October 2022
dc.relation.conferenceplaceRiobamba
dc.relation.iscitedby0
dc.relation.referencesAras K., Et al., Experimental data and geometric analysis repository-EDGAR, J. Electrocardiol., 48, 6, pp. 975-981, (2015)
dc.relation.referencesCluitmans M., Et al., Validation and opportunities of electrocardiographic imaging: From technical achievements to clinical applications, Front. Physiol., 9, (2018)
dc.relation.referencesCluitmans M.J.M., Clerx M., Vandersickel N., Peeters R.L.M., Volders P.G.A., Westra R.L., Physiology-based regularization of the electrocardiographic inverse problem, Med. Biol. Eng. Comput, 55, 8, pp. 1353-1365, (2017)
dc.relation.referencesCluitmans M., Et al., In vivo validation of electrocardiographic imaging, JACC: Clin. Electrophysiol., 3, 3, pp. 232-242, (2017)
dc.relation.referencesFiguera C., Et al., Regularization techniques for ECG imaging during atrial fibrillation: A computational study, Front. Physiol., 7, (2016)
dc.relation.referencesRajagopal A., Radzicki V., Lee H., Chandrasekaran S., Nonlinear electrocardiographic imaging using polynomial approximation networks, APL Bioeng, 2, 4, (2018)
dc.relation.referencesSanchez-Pozo N.N., Mejia-Ordonez J.S., Chamorro D.C., Mayorca-Torres D., Peluffo-Ordonez D.H., Predicting high school students’ academic performance: a comparative study of supervised machine learning techniques, Future of Educational Innovation Workshop Series-Machine Learning-Driven Digital Technologies for Educational Innovation Workshop, 202, (2021)
dc.relation.referencesWang L., Gharbia O.A., Horacek B.M., Sapp J.L., Noninvasive epicardial and endocardial electrocardiographic imaging of scar-related ventricular tachycardia, J. Electrocardiol., 49, 6, pp. 887-893, (2016)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsComputational geometry
dc.subject.keywordsGraph theory
dc.subject.keywordsHamilton cycles
dc.subject.keywordsComputational geometry
dc.subject.keywordsDeep learning
dc.subject.keywordsElectrocardiography
dc.subject.keywordsIterative methods
dc.subject.keywordsBody surface potentials
dc.subject.keywordsCorrelation coefficient
dc.subject.keywordsDirect modelling
dc.subject.keywordsElectrical activities
dc.subject.keywordsElectrocardiographic imaging
dc.subject.keywordsHamilton cycle
dc.subject.keywordsImaging reconstruction
dc.subject.keywordsNeural-networks
dc.subject.keywordsPerformance
dc.subject.keywordsProbabilistics
dc.subject.keywordsGraph theory
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem