Mostrar el registro sencillo del ítem
Neural Networks on Noninvasive Electrocardiographic Imaging Reconstructions: Preliminary Results
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Mayorca-Torres D. | |
dc.contributor.author | León-Salas A.J. | |
dc.contributor.author | Peluffo-Ordoñez D.H. | |
dc.contributor.editor | Botto-Tobar M. | |
dc.contributor.editor | Gómez O.S. | |
dc.contributor.editor | Rosero Miranda R. | |
dc.contributor.editor | Luna-Encalada W. | |
dc.contributor.editor | Díaz Cadena A. | |
dc.contributor.other | 4th International Conference on Advances in Emerging Trends and Technologies, ICAETT 2022 | |
dc.date.accessioned | 2024-12-02T20:16:06Z | |
dc.date.available | 2024-12-02T20:16:06Z | |
dc.date.issued | 2023 | |
dc.identifier.isbn | 978-303125941-8 | |
dc.identifier.issn | 23673370 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/29022 | |
dc.description.abstract | In the reverse electrocardiography (ECG) problem, the objective is to reconstruct the heart’s electrical activity from a set of body surface potentials by solving the direct model and the geometry of the torso. Over the years, researchers have used various approaches to solve this problem, from direct, iterative, probabilistic, and those based on deep learning. The interest of the latter, among the wide range of techniques, is because the complexity of the problem can be significantly reduced while increasing the precision of the estimation. In this article, we evaluate the performance of a deep learning-based neural network compared to the Tikhonov method of zero order (ZOT), first (FOT), and second (SOT). Preliminary results show an improvement in performance over real data when Pearson’s correlation coefficient (CC) and (RMSE) are calculated. The CC’s mean value and standard deviation for the proposed method were 0.960 (0.065), well above ZOT, which was 0.864 (0.047). © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. | |
dc.description.sponsorship | The authors would like to acknowledge the valuable support given by the SDAS Research Group (https://sdas-group.com/). | |
dc.format | 8 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Lecture Notes in Networks and Systems | |
dc.source | Lect. Notes Networks Syst. | |
dc.source | Scopus | |
dc.title | Neural Networks on Noninvasive Electrocardiographic Imaging Reconstructions: Preliminary Results | |
datacite.contributor | Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia | |
datacite.contributor | Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain | |
datacite.contributor | Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco | |
datacite.contributor | Mayorca-Torres D., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia, Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain | |
datacite.contributor | León-Salas A.J., Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain | |
datacite.contributor | Peluffo-Ordoñez D.H., Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco | |
datacite.contributor | 4th International Conference on Advances in Emerging Trends and Technologies, ICAETT 2022 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | D. Mayorca-Torres | |
dc.contributor.contactperson | Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia | |
dc.contributor.contactperson | email: hayala@umariana.edu.co | |
dc.contributor.sponsor | Shandong Academy of Sciences, SDAS | |
dc.identifier.doi | 10.1007/978-3-031-25942-5_5 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151059805&doi=10.1007%2f978-3-031-25942-5_5&partnerID=40&md5=94cec4c232e53fa3c491aa3c9d0a36d7 | |
dc.relation.citationendpage | 63 | |
dc.relation.citationstartpage | 55 | |
dc.relation.citationvolume | 619 LNNS | |
dc.relation.conferencedate | 26 October 2022 through 28 October 2022 | |
dc.relation.conferenceplace | Riobamba | |
dc.relation.iscitedby | 0 | |
dc.relation.references | Aras K., Et al., Experimental data and geometric analysis repository-EDGAR, J. Electrocardiol., 48, 6, pp. 975-981, (2015) | |
dc.relation.references | Cluitmans M., Et al., Validation and opportunities of electrocardiographic imaging: From technical achievements to clinical applications, Front. Physiol., 9, (2018) | |
dc.relation.references | Cluitmans M.J.M., Clerx M., Vandersickel N., Peeters R.L.M., Volders P.G.A., Westra R.L., Physiology-based regularization of the electrocardiographic inverse problem, Med. Biol. Eng. Comput, 55, 8, pp. 1353-1365, (2017) | |
dc.relation.references | Cluitmans M., Et al., In vivo validation of electrocardiographic imaging, JACC: Clin. Electrophysiol., 3, 3, pp. 232-242, (2017) | |
dc.relation.references | Figuera C., Et al., Regularization techniques for ECG imaging during atrial fibrillation: A computational study, Front. Physiol., 7, (2016) | |
dc.relation.references | Rajagopal A., Radzicki V., Lee H., Chandrasekaran S., Nonlinear electrocardiographic imaging using polynomial approximation networks, APL Bioeng, 2, 4, (2018) | |
dc.relation.references | Sanchez-Pozo N.N., Mejia-Ordonez J.S., Chamorro D.C., Mayorca-Torres D., Peluffo-Ordonez D.H., Predicting high school students’ academic performance: a comparative study of supervised machine learning techniques, Future of Educational Innovation Workshop Series-Machine Learning-Driven Digital Technologies for Educational Innovation Workshop, 202, (2021) | |
dc.relation.references | Wang L., Gharbia O.A., Horacek B.M., Sapp J.L., Noninvasive epicardial and endocardial electrocardiographic imaging of scar-related ventricular tachycardia, J. Electrocardiol., 49, 6, pp. 887-893, (2016) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Computational geometry | |
dc.subject.keywords | Graph theory | |
dc.subject.keywords | Hamilton cycles | |
dc.subject.keywords | Computational geometry | |
dc.subject.keywords | Deep learning | |
dc.subject.keywords | Electrocardiography | |
dc.subject.keywords | Iterative methods | |
dc.subject.keywords | Body surface potentials | |
dc.subject.keywords | Correlation coefficient | |
dc.subject.keywords | Direct modelling | |
dc.subject.keywords | Electrical activities | |
dc.subject.keywords | Electrocardiographic imaging | |
dc.subject.keywords | Hamilton cycle | |
dc.subject.keywords | Imaging reconstruction | |
dc.subject.keywords | Neural-networks | |
dc.subject.keywords | Performance | |
dc.subject.keywords | Probabilistics | |
dc.subject.keywords | Graph theory | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]