Neural Networks on Noninvasive Electrocardiographic Imaging Reconstructions: Preliminary Results
Fecha
2023Autor
Mayorca-Torres D.
León-Salas A.J.
Peluffo-Ordoñez D.H.
Metadatos
Mostrar el registro completo del ítemResumen
In the reverse electrocardiography (ECG) problem, the objective is to reconstruct the heart’s electrical activity from a set of body surface potentials by solving the direct model and the geometry of the torso. Over the years, researchers have used various approaches to solve this problem, from direct, iterative, probabilistic, and those based on deep learning. The interest of the latter, among the wide range of techniques, is because the complexity of the problem can be significantly reduced while increasing the precision of the estimation. In this article, we evaluate the performance of a deep learning-based neural network compared to the Tikhonov method of zero order (ZOT), first (FOT), and second (SOT). Preliminary results show an improvement in performance over real data when Pearson’s correlation coefficient (CC) and (RMSE) are calculated. The CC’s mean value and standard deviation for the proposed method were 0.960 (0.065), well above ZOT, which was 0.864 (0.047). © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Colecciones
- Artículos Scopus [165]
Descripción
UNIVERSIDAD MARIANA
- Calle 18 No. 34-104 Pasto (N)
- (057) + 7244460 - Cel 3127306850
- informacion@umariana.edu.co
- NIT: 800092198-5
- Código SNIES: 1720
- Res. 1362 del 3 de febrero de 1983
NORMATIVIDAD INSTITUCIONAL
PROGRAMAS DE ESTUDIO
Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electronico notificacionesjudiciales@umariana.edu.co
CONVOCATORIASINSCRIPCIÓN DE HOJAS DE VIDAGESTIÓN DEL TALENTO HUMANO
POLÍTICA DE PROTECCIÓN DE DATOS PERSONALESCONDICIONES DE USO U TÉRMINOS LEGALESRÉGIMEN TRIBUTARIO ESPECIAL 2021
Copyright Universidad Mariana
Tecnología implementada por