Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorPozo-Ruiz S.
dc.contributor.authorMorocho-Cayamcela M.E.
dc.contributor.authorMayorca-Torres D.
dc.contributor.authorH. Peluffo-Ordóñez D.
dc.contributor.editorRocha A.
dc.contributor.editorFerrás C.
dc.contributor.editorDelgado E.J.
dc.contributor.editorPorras A.M.
dc.contributor.otherInternational Conference on Information Technology and Systems, ICITS 2022
dc.date.accessioned2024-12-02T20:15:59Z
dc.date.available2024-12-02T20:15:59Z
dc.date.issued2022
dc.identifier.isbn978-303096292-0
dc.identifier.issn23673370
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29002
dc.description.abstractParkinson’s disease is the second most common neurological disorder after Alzheimer. Several limitations and challenges have arisen when aiming to diagnose this disease. In this regard, a computer-aided diagnosis system is enforced for the early detection of any abnormalities. Prominent research efforts have been developed based on speech and gait analysis, nonetheless, electroencephalographic (EEG)-signal-driven approaches have acquired some interest recently to diagnose an early Parkinson’s disease. According to recent studies, the angles and sharpness of brain waves may hold key hints to detect Parkinson’s disease. In the present work, an exploratory study over digital signal processing, and machine learning techniques for characterizing and classifying Parkinson-diagnosed EEG signals is conducted, waveform shape, spectral, statistical and non-linear features are taken into account for the present study. The results, without being definitive, propose a suitable set of processing techniques to increase the performance, estimation accuracy, and interpretation of this physiological phenomenon. At the end, it was found that with the characterization performed, k-NN is the classifier which performs better, obtaining a mean accuracy of 86% when differentiating Parkinson’s disease patients and healthy control subjects. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.format9
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceLecture Notes in Networks and Systems
dc.sourceLect. Notes Networks Syst.
dc.sourceScopus
dc.titleParkinson’s Disease Diagnosis Through Electroencephalographic Signal Processing and Sub-optimal Feature Extraction
datacite.contributorSDAS Research Group, Ibarra, Ecuador
datacite.contributorSchool of Mathematical and Computational Sciences, Yachay Tech University, Urcuquí, Ecuador
datacite.contributorUniversidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia
datacite.contributorMohamed VI Polytechnique University, Marrakech, Morocco
datacite.contributorCorporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributorPozo-Ruiz S., SDAS Research Group, Ibarra, Ecuador
datacite.contributorMorocho-Cayamcela M.E., School of Mathematical and Computational Sciences, Yachay Tech University, Urcuquí, Ecuador
datacite.contributorMayorca-Torres D., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia
datacite.contributorH. Peluffo-Ordóñez D., Mohamed VI Polytechnique University, Marrakech, Morocco, Corporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributorInternational Conference on Information Technology and Systems, ICITS 2022
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonS. Pozo-Ruiz
dc.contributor.contactpersonSDAS Research Group, Ibarra, Ecuador
dc.contributor.contactpersonemail: santiago.pozo@sdas-group.com
dc.identifier.doi10.1007/978-3-030-96293-7_12
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85126193052&doi=10.1007%2f978-3-030-96293-7_12&partnerID=40&md5=553406686be9134a89e801a26df1da86
dc.relation.citationendpage127
dc.relation.citationstartpage118
dc.relation.citationvolume414 LNNS
dc.relation.conferencedate9 February 2022 through 11 February 2022
dc.relation.conferenceplaceSan Carlos
dc.relation.iscitedby1
dc.relation.referencesGibb W.R., Lees A.J., The relevance of the lewy body to the pathogene-sis of idiopathic parkinson’s disease, J. Neurol. Neurosurgery Psychiatry, 51, 6, (1988)
dc.relation.referencesGibb W., Accuracy in the clinical diagnosis of parkinsonian syndromes, Postgraduate Med. J., 64, 751, pp. 345-351, (1988)
dc.relation.referencesGelb D.J., Oliver E., Gilman S., Diagnostic criteria for parkinson disease, Archives Neurol, 56, 1, pp. 33-39, (1999)
dc.relation.referencesVega-Gualan E., Vargas A., Becerra M., Umaquinga A., Riascos J.A., Peluffo D., LNAI, inbook Exploring the Characterization and Classification of EEG Signals for a Computer-Aided Epilepsy Diagnosis System, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 189-198, (2019)
dc.relation.referencesRodriguez-Sotelo J.L., Osorio-Forero A., Jimenez-Rodriguez A., Cuesta-Frau D., Cirugeda-Roldan E., Peluffo D., Automatic sleep stages classification using eeg entropy features and unsupervised pattern analysis techniques, Entropy, 16, 12, pp. 6573-6589, (2014)
dc.relation.referencesJackson N., Cole S.R., Voytek B., Swann N.C., Characteristics of waveform shape in parkinson’s disease detected with scalp electroencephalography, Eneuro, 6, 3, (2019)
dc.relation.referencesSwann N.C., de Hemptinne C., Aron A.R., Ostrem J.L., Knight R.T., Starr P.A., Elevated synchrony in parkinson disease detected with electroencephalography, Ann. Neurol., 78, 5, pp. 742-750, (2015)
dc.relation.referencesStam C., Jelles B., Achtereekte H., Rombouts S., Slaets J., Keunen R., Investigation of EEG non-linearity in dementia and Parkinson’s disease, Electroencephalography Clin. Neurophysiol., 95, 5, pp. 309-317, (1995)
dc.relation.referencesStam K.J., Tavy D.L.J., Jelles B., Achtereekte H.A.M., Slaets J.P.J., Keunen R.W.M., Non-linear dynamical analysis of multichannel EEG: Clinical applications in dementia and Parkinson’s disease, Brain Topography, 7, 2, pp. 141-150, (1994)
dc.relation.referencesHan C.X., Wang J., Yi G., Che Y., Investigation of eeg abnormalities in the early stage of parkinson’s disease, Cognitive Neurodynamics, 7, (2013)
dc.relation.referencesCavanagh J.F., Napolitano A., Wu C., Mueen A., The patient repository for eeg data + computational tools (pred+ct), Front. Neuroinform., 11, 67, (2017)
dc.relation.referencesOh S.L., Hagiwara Y., U, R., Rajamanickam, Y., Arunkumar, Acharya, U.R.: A Deep Learning Approach for parkinson’s Disease Diagnosis from Eeg Signals. Neural Comput. Appl, (2020)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsEEG
dc.subject.keywordsMachine learning
dc.subject.keywordsMedical informatics
dc.subject.keywordsParkinson’s disease
dc.subject.keywordsSignal processing
dc.subject.keywordsWaveform shape
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem