Mostrar el registro sencillo del ítem
Parkinson’s Disease Diagnosis Through Electroencephalographic Signal Processing and Sub-optimal Feature Extraction
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Pozo-Ruiz S. | |
dc.contributor.author | Morocho-Cayamcela M.E. | |
dc.contributor.author | Mayorca-Torres D. | |
dc.contributor.author | H. Peluffo-Ordóñez D. | |
dc.contributor.editor | Rocha A. | |
dc.contributor.editor | Ferrás C. | |
dc.contributor.editor | Delgado E.J. | |
dc.contributor.editor | Porras A.M. | |
dc.contributor.other | International Conference on Information Technology and Systems, ICITS 2022 | |
dc.date.accessioned | 2024-12-02T20:15:59Z | |
dc.date.available | 2024-12-02T20:15:59Z | |
dc.date.issued | 2022 | |
dc.identifier.isbn | 978-303096292-0 | |
dc.identifier.issn | 23673370 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/29002 | |
dc.description.abstract | Parkinson’s disease is the second most common neurological disorder after Alzheimer. Several limitations and challenges have arisen when aiming to diagnose this disease. In this regard, a computer-aided diagnosis system is enforced for the early detection of any abnormalities. Prominent research efforts have been developed based on speech and gait analysis, nonetheless, electroencephalographic (EEG)-signal-driven approaches have acquired some interest recently to diagnose an early Parkinson’s disease. According to recent studies, the angles and sharpness of brain waves may hold key hints to detect Parkinson’s disease. In the present work, an exploratory study over digital signal processing, and machine learning techniques for characterizing and classifying Parkinson-diagnosed EEG signals is conducted, waveform shape, spectral, statistical and non-linear features are taken into account for the present study. The results, without being definitive, propose a suitable set of processing techniques to increase the performance, estimation accuracy, and interpretation of this physiological phenomenon. At the end, it was found that with the characterization performed, k-NN is the classifier which performs better, obtaining a mean accuracy of 86% when differentiating Parkinson’s disease patients and healthy control subjects. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. | |
dc.format | 9 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Lecture Notes in Networks and Systems | |
dc.source | Lect. Notes Networks Syst. | |
dc.source | Scopus | |
dc.title | Parkinson’s Disease Diagnosis Through Electroencephalographic Signal Processing and Sub-optimal Feature Extraction | |
datacite.contributor | SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | School of Mathematical and Computational Sciences, Yachay Tech University, Urcuquí, Ecuador | |
datacite.contributor | Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia | |
datacite.contributor | Mohamed VI Polytechnique University, Marrakech, Morocco | |
datacite.contributor | Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
datacite.contributor | Pozo-Ruiz S., SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | Morocho-Cayamcela M.E., School of Mathematical and Computational Sciences, Yachay Tech University, Urcuquí, Ecuador | |
datacite.contributor | Mayorca-Torres D., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia | |
datacite.contributor | H. Peluffo-Ordóñez D., Mohamed VI Polytechnique University, Marrakech, Morocco, Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
datacite.contributor | International Conference on Information Technology and Systems, ICITS 2022 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | S. Pozo-Ruiz | |
dc.contributor.contactperson | SDAS Research Group, Ibarra, Ecuador | |
dc.contributor.contactperson | email: santiago.pozo@sdas-group.com | |
dc.identifier.doi | 10.1007/978-3-030-96293-7_12 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126193052&doi=10.1007%2f978-3-030-96293-7_12&partnerID=40&md5=553406686be9134a89e801a26df1da86 | |
dc.relation.citationendpage | 127 | |
dc.relation.citationstartpage | 118 | |
dc.relation.citationvolume | 414 LNNS | |
dc.relation.conferencedate | 9 February 2022 through 11 February 2022 | |
dc.relation.conferenceplace | San Carlos | |
dc.relation.iscitedby | 1 | |
dc.relation.references | Gibb W.R., Lees A.J., The relevance of the lewy body to the pathogene-sis of idiopathic parkinson’s disease, J. Neurol. Neurosurgery Psychiatry, 51, 6, (1988) | |
dc.relation.references | Gibb W., Accuracy in the clinical diagnosis of parkinsonian syndromes, Postgraduate Med. J., 64, 751, pp. 345-351, (1988) | |
dc.relation.references | Gelb D.J., Oliver E., Gilman S., Diagnostic criteria for parkinson disease, Archives Neurol, 56, 1, pp. 33-39, (1999) | |
dc.relation.references | Vega-Gualan E., Vargas A., Becerra M., Umaquinga A., Riascos J.A., Peluffo D., LNAI, inbook Exploring the Characterization and Classification of EEG Signals for a Computer-Aided Epilepsy Diagnosis System, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 189-198, (2019) | |
dc.relation.references | Rodriguez-Sotelo J.L., Osorio-Forero A., Jimenez-Rodriguez A., Cuesta-Frau D., Cirugeda-Roldan E., Peluffo D., Automatic sleep stages classification using eeg entropy features and unsupervised pattern analysis techniques, Entropy, 16, 12, pp. 6573-6589, (2014) | |
dc.relation.references | Jackson N., Cole S.R., Voytek B., Swann N.C., Characteristics of waveform shape in parkinson’s disease detected with scalp electroencephalography, Eneuro, 6, 3, (2019) | |
dc.relation.references | Swann N.C., de Hemptinne C., Aron A.R., Ostrem J.L., Knight R.T., Starr P.A., Elevated synchrony in parkinson disease detected with electroencephalography, Ann. Neurol., 78, 5, pp. 742-750, (2015) | |
dc.relation.references | Stam C., Jelles B., Achtereekte H., Rombouts S., Slaets J., Keunen R., Investigation of EEG non-linearity in dementia and Parkinson’s disease, Electroencephalography Clin. Neurophysiol., 95, 5, pp. 309-317, (1995) | |
dc.relation.references | Stam K.J., Tavy D.L.J., Jelles B., Achtereekte H.A.M., Slaets J.P.J., Keunen R.W.M., Non-linear dynamical analysis of multichannel EEG: Clinical applications in dementia and Parkinson’s disease, Brain Topography, 7, 2, pp. 141-150, (1994) | |
dc.relation.references | Han C.X., Wang J., Yi G., Che Y., Investigation of eeg abnormalities in the early stage of parkinson’s disease, Cognitive Neurodynamics, 7, (2013) | |
dc.relation.references | Cavanagh J.F., Napolitano A., Wu C., Mueen A., The patient repository for eeg data + computational tools (pred+ct), Front. Neuroinform., 11, 67, (2017) | |
dc.relation.references | Oh S.L., Hagiwara Y., U, R., Rajamanickam, Y., Arunkumar, Acharya, U.R.: A Deep Learning Approach for parkinson’s Disease Diagnosis from Eeg Signals. Neural Comput. Appl, (2020) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | EEG | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Medical informatics | |
dc.subject.keywords | Parkinson’s disease | |
dc.subject.keywords | Signal processing | |
dc.subject.keywords | Waveform shape | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]