• Inicio
  • Comunidades
    • español
    • English
    • Guía de ingreso de datos
    • política de creación y funcionamiento del repositorio

Repositorio Institucional

Ver ítem 
  •   Repositorio Clara de Asís
  • Artículos científicos
  • Artículos Scopus
  • Ver ítem
  •   Repositorio Clara de Asís
  • Artículos científicos
  • Artículos Scopus
  • Ver ítem

Parkinson’s Disease Diagnosis Through Electroencephalographic Signal Processing and Sub-optimal Feature Extraction

Thumbnail
Fecha
2022
Autor
Pozo-Ruiz S.
Morocho-Cayamcela M.E.
Mayorca-Torres D.
H. Peluffo-Ordóñez D.
Metadatos
Mostrar el registro completo del ítem
Resumen
Parkinson’s disease is the second most common neurological disorder after Alzheimer. Several limitations and challenges have arisen when aiming to diagnose this disease. In this regard, a computer-aided diagnosis system is enforced for the early detection of any abnormalities. Prominent research efforts have been developed based on speech and gait analysis, nonetheless, electroencephalographic (EEG)-signal-driven approaches have acquired some interest recently to diagnose an early Parkinson’s disease. According to recent studies, the angles and sharpness of brain waves may hold key hints to detect Parkinson’s disease. In the present work, an exploratory study over digital signal processing, and machine learning techniques for characterizing and classifying Parkinson-diagnosed EEG signals is conducted, waveform shape, spectral, statistical and non-linear features are taken into account for the present study. The results, without being definitive, propose a suitable set of processing techniques to increase the performance, estimation accuracy, and interpretation of this physiological phenomenon. At the end, it was found that with the characterization performed, k-NN is the classifier which performs better, obtaining a mean accuracy of 86% when differentiating Parkinson’s disease patients and healthy control subjects. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
URI
https://hdl.handle.net/20.500.14112/29002
Colecciones
  • Artículos Scopus [165]
Descripción


    UNIVERSIDAD MARIANA

    • Calle 18 No. 34-104 Pasto (N)
    • (057) + 7244460 - Cel 3127306850
    • informacion@umariana.edu.co
    • NIT: 800092198-5
    • Código SNIES: 1720
    • Res. 1362 del 3 de febrero de 1983

    NORMATIVIDAD INSTITUCIONAL

    • Estatuto General
    • Reglamento General
    • Reglamento Educadores profesionales
    • Reglamento de Educados
    • Reglamento de Trabajo
    • PDI 2021 - 2028

    PROGRAMAS DE ESTUDIO

    • Programas de Pregrado
    • Especializaciones
    • Maestrías
    • Doctorados
    • Educación Virtual
    • Programas Técnicos y Tecnológicos

    PROGRAMAS DE FACULTAD

    • Ingeniería
    • Ciencias de la salud
    • Humanidades y Ciencias Sociales
    • Ciencias Contables, Económicas y Adm.
    • Educación

    Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electronico notificacionesjudiciales@umariana.edu.co


    CONVOCATORIASINSCRIPCIÓN DE HOJAS DE VIDAGESTIÓN DEL TALENTO HUMANO


    POLÍTICA DE PROTECCIÓN DE DATOS PERSONALESCONDICIONES DE USO U TÉRMINOS LEGALESRÉGIMEN TRIBUTARIO ESPECIAL 2021


    Copyright Universidad Mariana

    Tecnología implementada por

    Listar

    Todo repositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTipo de documentoTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTipo de documentoTítulosMaterias

    Mi cuenta

    AccederRegistro
    Universidad Mariana
    • Calle 18 No. 34 - 104 Pasto (N)
    • (602) + 7244460 - Cel. 3127306850
    • informacion@umariana.edu.co
    • NIT: 800092198-5
    • Código SNIES: 1720
    • Res. 1362 del 3 de febrero de 1983
    Normatividad institucional
    • Estatuto General
    • Reglamento General
    • Reglamento Educadores Profesionales
    • Reglamento de Educandos
    • Reglamento de Trabajo
    • PDI 2021 - 2028
    Programas de estudio
    • Programas Profesionales
    • Especializaciones
    • Maestrías
    • Doctorados
    • Educación Virtual
    • Programas Técnicos y Tecnológicos
    Programas por facultades
    • Ingeniería
    • Ciencias de la Salud
    • Humanidades y Ciencias Sociales
    • Ciencias Contables, Económicas y Administrativas
    • Educación

    Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electrónico notificacionesjudiciales@umariana.edu.co

    • Trabaje con nosotros
    • Inscripción de Hojas de Vida
    • Gestión del Talento Humano
    • Política de Protección de Datos Personales
    • Condiciones de uso y términos legales
    • Régimen Tributario Especial 2022
    Universidad Mariana

    Copyright © 2023
    Universidad Mariana

    Acuerdo 015 del 18 de mayo de 2011
    Un espacio 100% libre de humo de cigarrillo

    Tecnología implementada por