Mostrar el registro sencillo del ítem
First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | de Oliveira Junqueira A.C. | |
dc.contributor.author | de Melo Pereira G.V. | |
dc.contributor.author | Coral Medina J.D. | |
dc.contributor.author | Alvear M.C.R. | |
dc.contributor.author | Rosero R. | |
dc.contributor.author | de Carvalho Neto D.P. | |
dc.contributor.author | Enríquez H.G. | |
dc.contributor.author | Soccol C.R. | |
dc.date.accessioned | 2024-12-02T20:15:59Z | |
dc.date.available | 2024-12-02T20:15:59Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 20452322 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28999 | |
dc.description.abstract | In Colombia, coffee growers use a traditional method of fermentation to remove the cherry pulp surrounding the beans. This process has a great influence on sensory quality and prestige of Colombian coffee in international markets, but has never been studied. Here we use an Illumina-based amplicon sequencing to investigate bacterial and fungal communities associated with spontaneous coffee-bean fermentation in Colombia. Microbial-derived metabolites were further analysed by high–performance liquid chromatography and gas chromatography–mass spectrometry. Highly diverse bacterial groups, comprising 160 genera belonging to 10 phyla, were found. Lactic acid bacteria (LAB), mainly represented by the genera Leuconostoc and Lactobacillus, showed relative prevalence over 60% at all sampling times. The structure of the fungal community was more homogeneous, with Pichia nakasei dominating throughout the fermentation process. Lactic acid and acetaldehyde were the major end-metabolites produced by LAB and Pichia, respectively. In addition, 20 volatile compounds were produced, comprising alcohols, organic acids, aldehydes, esters, terpenes, phenols, and hydrocarbons. Interestingly, 56 microbial genera, associated with native soil, seawater, plants, insects, and human contact, were detected for the first time in coffee fermentation. These microbial groups harbour a remarkable phenotypic diversity and may impart flavours that yield clues to the terroir of Colombian coffees. © 2019, The Author(s). | |
dc.description.sponsorship | The authors gratefully acknowledge the support provided by Brazilian Council for Scientific and Technological Development (Grant Number 303254/2017-3). | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Nature Publishing Group | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Scientific Reports | |
dc.source | Sci. Rep. | |
dc.source | Scopus | |
dc.title | First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing | |
datacite.contributor | Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná, 81531-980, Brazil | |
datacite.contributor | Department of Process and Biotechnology, Mariana University, Nariño, 520002, Pasto, Colombia | |
datacite.contributor | de Oliveira Junqueira A.C., Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná, 81531-980, Brazil | |
datacite.contributor | de Melo Pereira G.V., Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná, 81531-980, Brazil | |
datacite.contributor | Coral Medina J.D., Department of Process and Biotechnology, Mariana University, Nariño, 520002, Pasto, Colombia | |
datacite.contributor | Alvear M.C.R., Department of Process and Biotechnology, Mariana University, Nariño, 520002, Pasto, Colombia | |
datacite.contributor | Rosero R., Department of Process and Biotechnology, Mariana University, Nariño, 520002, Pasto, Colombia | |
datacite.contributor | de Carvalho Neto D.P., Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná, 81531-980, Brazil | |
datacite.contributor | Enríquez H.G., Department of Process and Biotechnology, Mariana University, Nariño, 520002, Pasto, Colombia | |
datacite.contributor | Soccol C.R., Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 19011 Curitiba, Paraná, 81531-980, Brazil | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | C.R. Soccol | |
dc.contributor.contactperson | Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Paraná, 19011 Curitiba, 81531-980, Brazil | |
dc.contributor.contactperson | email: soccol@ufpr.br | |
dc.contributor.sponsor | Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, (303254/2017-3) | |
dc.identifier.doi | 10.1038/s41598-019-45002-8 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | 8794 | |
dc.identifier.pissn | 31217528 | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067809964&doi=10.1038%2fs41598-019-45002-8&partnerID=40&md5=cb91fba981dd220db8d543c880e4fba7 | |
dc.relation.citationvolume | 9 | |
dc.relation.iscitedby | 80 | |
dc.relation.references | Report on Coffee Total Production by All Exporting Countries in Thousand 60 Kg Bags, 1, (2018) | |
dc.relation.references | Lara-Estrada L., Vaast P., Effects of altitude, shade, yield and fertilization on coffee quality (Coffea arabica L. var. Caturra) produced in agroforestry systems of the Northern Central Zones of Nicaragua, In 2nd International Symposium on Multi-Strata Agroforestry Systems with Perennial Crops, 68, pp. 17-21, (2007) | |
dc.relation.references | Pereira G.V.M., Et al., Exploring the impacts of postharvest processing on the aroma formation of co ff ee beans – A review, Food Chem., 272, pp. 441-452, (2019) | |
dc.relation.references | Pereira G.V., Et al., Microbial ecology and starter culture technology in coffee processing, Crit. Rev. Food Sci. Nutr., 57, pp. 2775-2788, (2017) | |
dc.relation.references | Lee L.W., Cheong M.W., Curran P., Yu B., Liu S.Q., Coffee fermentation and flavor - An intricate and delicate relationship, Food Chem., 185, pp. 182-191, (2015) | |
dc.relation.references | Avallone S., Guyot B., Brillouet J.M., Olguin E., Guiraud J.P., Microbiological and biochemical study of coffee fermentation, Curr. Microbiol., 42, pp. 252-256, (2001) | |
dc.relation.references | Masoud W., Cesar L.B., Jespersen L., Jakobsen M., Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis, Yeast, 21, pp. 549-556, (2004) | |
dc.relation.references | Pereira G.V.M., Et al., Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process, Int. J. Food Microbiol., 188, pp. 60-66, (2014) | |
dc.relation.references | Carvalho D.P.D., Pereira G.V.M., Soccol C.R., High-Throughput rRNA Gene Sequencing Reveals High and Complex Bacterial Diversity Associated with Brazilian Coffee Bean Fermentation, Food Technol. Biotechnol., 56, (2018) | |
dc.relation.references | De Bruyn F., Et al., Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production, Appl. Environ. Microbiol., 83, pp. e02398-e2316, (2017) | |
dc.relation.references | Pereira G.V.M., Et al., Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects, Food Res. Int., 75, pp. 348-356, (2015) | |
dc.relation.references | Evangelista S.R., Et al., Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process, Food Res. Int., 61, pp. 183-195, (2014) | |
dc.relation.references | Pereira G.V.M., Soccol V.T., Soccol C.R., Current state of research on cocoa and coffee fermentations, Curr. Opin. Food Sci., 7, pp. 50-57, (2016) | |
dc.relation.references | Lee L.W., Cheong M.W., Curran P., Yu B., Liu S.Q., Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: II. Effects of different roast levels, Food Chem., 211, pp. 925-936, (2016) | |
dc.relation.references | Lee L.W., Et al., Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: II. Roasted coffee, LWT, 80, pp. 32-42, (2017) | |
dc.relation.references | Fleet G.H., Yeast interactions and wine flavour, Int. J. Food Microbiol., 86, pp. 11-22, (2003) | |
dc.relation.references | Viljoen B.C., Yeast ecological interactions. Yeast-yeast, yeast-bacteria, yeast-fungi and yeasts as biocontrol agents, Yeast in Food and Beverages, pp. 83-110, (2006) | |
dc.relation.references | Jouhten P., Ponomarova O., Gonzalez R., Patil K.R., Saccharomyces cerevisiae metabolism in ecological context, FEMS Yeast Res., 16, pp. 1-8, (2016) | |
dc.relation.references | Alexandre H., Guilloux-Benatier M., Yeast autolysis in sparkling wine - A review, Aust. J. Grape Wine Res., 12, pp. 119-127, (2006) | |
dc.relation.references | Crotti E., Et al., Acetic acid bacteria, newly emergin symbionts of insects, Appl. Environ. Microbiol., 76, pp. 6963-6970, (2010) | |
dc.relation.references | Anderson K.E., Et al., Highly similar microbial communities are shared among related and trophically similar ant species, Mol. Ecol., 21, pp. 2282-2296, (2012) | |
dc.relation.references | Lakshmanan V., Selvaraj G., Bais H.P., Functional soil microbiome: Belowground solutions to an aboveground problem, Plant Physiol., 166, pp. 689-700, (2014) | |
dc.relation.references | Findley K., Et al., Topographic diversity of fungal and bacterial communities in human skin, Nature, 498, pp. 367-370, (2013) | |
dc.relation.references | Kreisinger J., Cizkova D., Kropackova L., Albrecht T., Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing, PLoS One, 10, (2015) | |
dc.relation.references | Renganath Rao R., Et al., Alkaline Protease Production from Brevibacterium luteolum (MTCC 5982) Under Solid-State Fermentation and Its Application for Sulfide-Free Unhairing of Cowhides, Appl. Biochem. Biotechnol., 182, pp. 511-528, (2017) | |
dc.relation.references | Liu M., Et al., Kineococcus xinjiangensis sp. nov., isolated from desert sand, Int. J. Syst. Evol. Microbiol., 61, pp. 1865-1869, (2011) | |
dc.relation.references | Gueule D., Et al., Pantoea coffeiphila sp. nov., cause of the ‘potato taste’ of Arabica coffee from the African great lakes region, Int. J. Syst. Evol. Microbiol., 65, pp. 23-29, (2015) | |
dc.relation.references | Jiayang Q., Zijun X., Cuiqing M., Nengzhong X., Peihai L., Production of 2,3-Butanediol by, Chinese J. Chem. Eng., 14, pp. 132-136, (2006) | |
dc.relation.references | Dahl S., Tavaria F.K., Malcata F.X., Relationships between flavour and microbiological profiles in Serra da Estrela cheese throughout ripening, Int. Dairy J., 10, pp. 255-262, (2000) | |
dc.relation.references | Brown B.P., Wernegreen J.J., Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants, BMC Microbiol., 16, (2016) | |
dc.relation.references | Douglas A.E., Multiorganismal Insects: Diversity and Function of Resident Microorganisms, Annu. Rev. Entomol., 60, pp. 17-34, (2015) | |
dc.relation.references | Pereira G.V.M., Et al., Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing, Int. J. Food Sci. Technol., 51, pp. 1689-1695, (2016) | |
dc.relation.references | Leong K.-H., Et al., Diversity of Lactic Acid Bacteria Associated with Fresh Coffee Cherries in Taiwan, Curr. Microbiol., 68, pp. 440-447, (2014) | |
dc.relation.references | Velmourougane K., Impact of natural fermentation on physicochemical, microbiological and cup quality characteristics of Arabica and Robusta coffee, Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci., 83, pp. 233-239, (2013) | |
dc.relation.references | Djossou O., Et al., Robusta coffee beans post-harvest microflora: Lactobacillus plantarum sp. as potential antagonist of Aspergillus carbonarius, Anaerobe, 17, pp. 267-272, (2011) | |
dc.relation.references | Carvalho Neto D.P., Et al., Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies, Food Biosci., 26, pp. 80-87, (2018) | |
dc.relation.references | Endo A., Dicks L.M.T., Pgysiology of the LAB. in Lactic Acid Bacteria: Biodiversity and Taxonomy, pp. 13-30, (2014) | |
dc.relation.references | Silva C.F., Batista L.R., Abreu L.M., Dias E.S., Schwan R.F., Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation, Food Microbiol., 25, pp. 951-957, (2008) | |
dc.relation.references | Feng X., Et al., Culture-Dependent and -Independent Methods to Investigate the Predominant Microorganisms Associated with Wet Processed Coffee, Curr. Microbiol., 73, pp. 190-195, (2016) | |
dc.relation.references | The Yeasts - a Taxonomic Study, (2011) | |
dc.relation.references | Gueho E., Et al., The role of Malassezia species in the ecology of human skin and as pathogens, Med. Mycol., 36, pp. 220-229, (1998) | |
dc.relation.references | Takashima M., Suh S.-O., Nakase T., Bensingtonia musae sp. nov. isolated from a dead leaf of Musa paradisiaca and its phylogenetic relationship among basidiomycetous yeasts, J. Gen. Appl. Microbiol., 41, pp. 143-151, (1995) | |
dc.relation.references | Nagahama T., Et al., Dipodascus tetrasporeus sp. nov., an ascosporogenous yeast isolated from deep-sea sediments in the Japan Trench, Int. J. Syst. Evol. Microbiol., 58, pp. 1040-1046, (2008) | |
dc.relation.references | Simmons D.R., James T.Y., Meyer A.F., Longcore J.E., Lobulomycetales, a new order in the Chytridiomycota, Mycol. Res., 113, pp. 450-460, (2009) | |
dc.relation.references | Freeman K.R., Et al., Evidence that chytrids dominate fungal communities in high-elevation soils, Proc. Natl. Acad. Sci., 106, pp. 18315-18320, (2009) | |
dc.relation.references | Murthy P.S., Madhava Naidu M., Improvement of Robusta Coffee Fermentation with Microbial Enzymes, Eur. J. Appl. Sci., 3, pp. 130-139, (2011) | |
dc.relation.references | Carvalho Neto D.P., Et al., Yeast Diversity and Physicochemical Characteristics Associated with Coffee Bean Fermentation from the Brazilian Cerrado Mineiro Region, Fermentation, 3, (2017) | |
dc.relation.references | Velmourougane K., Shanmukhappa D.R., Venkatesh K., Prakasan C.B., & Jayarama. Use of starter culture in coffee fermentation - effect on demucilisation and cup quality, Indian Coffee, 72, pp. 31-34, (2008) | |
dc.relation.references | Avallone S., Brillouet J.M., Guyot B., Olguin E., Guiraud J.P., Involvement of pectolytic micro-organisms in coffee fermentation, Int. J. Food Sci. Technol., 37, pp. 191-198, (2002) | |
dc.relation.references | Wang C., Sun J., Lassabliere B., Yu B., Zhao F., Zhao F., Chen Y., Liu S.Q., Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting, Journal of the Science of Food and Agriculture, 99, 1, pp. 409-420, (2018) | |
dc.relation.references | Ciani M., Ferraro L., Fatichenti F., Influence of glycerol production on the aerobic and anaerobic growth of the wine yeast Candida stellata, Enzyme Microb. Technol., 27, pp. 698-703, (2000) | |
dc.relation.references | Moreno J.A., Zea L., Moyano L., Medina M., Aroma compounds as markers of the changes in sherry wines subjected to biological ageing, Food Control, 16, pp. 333-338, (2005) | |
dc.relation.references | Routray W., Mishra H.N., Scientific and Technical Aspects of Yogurt Aroma and Taste: A Review, Compr. Rev. Food Sci. Food Saf., 10, pp. 208-220, (2011) | |
dc.relation.references | Swiegers J.H., Bartowsky E.J., Henschke P.A., Pretorius I.S., Yeast and bacterial modulation of wine aroma and flavour, Aust. J. Grape Wine Res., 11, pp. 139-173, (2005) | |
dc.relation.references | Kieronczyk A., Skeie S., Langsrud T., Yvon M., Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids, Appl. Environ. Microbiol., 69, pp. 734-739, (2003) | |
dc.relation.references | Annan N.T., Poll L., Sefa-Dedeh S., Plahar W.A., Jakobsen M., Influence of starter culture combinations of Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei on aroma in Ghanaian maize dough fermentation, Eur. Food Res. Technol., 216, pp. 377-384, (2003) | |
dc.relation.references | Basso R.F., Alcarde A.R., Portugal C.B., Could non-Saccharomyces yeasts contribute on innovative brewing fermentations?, Food Res. Int., 86, pp. 112-120, (2016) | |
dc.relation.references | Vallet A., Lucas P., Lonvaud-Funel A., De Revel G., Pathways that produce volatile sulphur compounds from methionine in Oenococcus oeni, J. Appl. Microbiol., 104, pp. 1833-1840, (2008) | |
dc.relation.references | Waters D.M., Arendt E.K., Moroni A.V., Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality, Crit. Rev. Food Sci. Nutr., 57, pp. 259-274, (2017) | |
dc.relation.references | Caporaso J.G., Et al., Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms, ISME J., 6, pp. 1621-1624, (2012) | |
dc.relation.references | Caporaso J.G., Et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods., 7, pp. 335-336, (2010) | |
dc.relation.references | Quast C., Et al., The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools, Nucleic Acids Res., 41, pp. D590-D596, (2013) | |
dc.relation.references | Edgar R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 26, pp. 2460-2461, (2010) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Bacteria | |
dc.subject.keywords | Coffee | |
dc.subject.keywords | Colombia | |
dc.subject.keywords | Fermentation | |
dc.subject.keywords | Fungi | |
dc.subject.keywords | High-Throughput Nucleotide Sequencing | |
dc.subject.keywords | Hydrogen-Ion Concentration | |
dc.subject.keywords | Metabolome | |
dc.subject.keywords | Phylogeny | |
dc.subject.keywords | RNA, Ribosomal, 16S | |
dc.subject.keywords | RNA, Ribosomal, 18S | |
dc.subject.keywords | Sugars | |
dc.subject.keywords | Temperature | |
dc.subject.keywords | Volatile Organic Compounds | |
dc.subject.keywords | carbohydrate | |
dc.subject.keywords | RNA 16S | |
dc.subject.keywords | RNA 18S | |
dc.subject.keywords | volatile organic compound | |
dc.subject.keywords | bacterium | |
dc.subject.keywords | coffee | |
dc.subject.keywords | Colombia | |
dc.subject.keywords | fermentation | |
dc.subject.keywords | fungus | |
dc.subject.keywords | genetics | |
dc.subject.keywords | growth, development and aging | |
dc.subject.keywords | high throughput sequencing | |
dc.subject.keywords | metabolome | |
dc.subject.keywords | microbiology | |
dc.subject.keywords | pH | |
dc.subject.keywords | phylogeny | |
dc.subject.keywords | temperature | |
dc.subject.keywords | Coffee, | |
dc.subject.keywords | RNA, Ribosomal, 16S, | |
dc.subject.keywords | RNA, Ribosomal, 18S, | |
dc.subject.keywords | Sugars, | |
dc.subject.keywords | Volatile Organic Compounds, | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.spa | Artículo científico | |
dc.relation.citationissue | 1 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]