Mostrar el registro sencillo del ítem
Sign Language Recognition Using Leap Motion Based on Time-Frequency Characterization and Conventional Machine Learning Techniques
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | López-Albán D. | |
dc.contributor.author | López-Barrera A. | |
dc.contributor.author | Mayorca-Torres D. | |
dc.contributor.author | Peluffo-Ordóñez D. | |
dc.contributor.editor | Florez H. | |
dc.contributor.editor | Pollo-Cattaneo M.F. | |
dc.contributor.other | 4th International Conference on Applied Informatics, ICAI 2021 | |
dc.date.accessioned | 2024-12-02T20:15:54Z | |
dc.date.available | 2024-12-02T20:15:54Z | |
dc.date.issued | 2021 | |
dc.identifier.isbn | 978-303089653-9 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28986 | |
dc.description.abstract | The abstract should briefly summarize the contents of the paper in Sign language is the form of communication between the deaf and hearing population, which uses the gesture-spatial configuration of the hands as a communication channel with their social environment. This work proposes the development of a gesture recognition method associated with sign language from the processing of time series from the spatial position of hand reference points granted by a Leap Motion optical sensor. A methodology applied to a validated American Sign Language (ASL) Dataset which involves the following sections: (i) preprocessing for filtering null frames, (ii) segmentation of relevant information, (iii) time-frequency characterization from the Discrete Wavelet Transform (DWT). Subsequently, the classification is carried out with Machine Learning algorithms (iv). It is graded by a 97.96% rating yield using the proposed methodology with the Fast Tree algorithm. © 2021, Springer Nature Switzerland AG. | |
dc.format | 12 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Communications in Computer and Information Science | |
dc.source | Commun. Comput. Info. Sci. | |
dc.source | Scopus | |
dc.title | Sign Language Recognition Using Leap Motion Based on Time-Frequency Characterization and Conventional Machine Learning Techniques | |
datacite.contributor | Universidad Mariana, Pasto, 520001, Colombia | |
datacite.contributor | Mohammed VI Polytechnic University, Ben Guerir, 47963, Morocco | |
datacite.contributor | SDAS Research Group, Ben Guerir, 47963, Morocco | |
datacite.contributor | López-Albán D., Universidad Mariana, Pasto, 520001, Colombia | |
datacite.contributor | López-Barrera A., Universidad Mariana, Pasto, 520001, Colombia | |
datacite.contributor | Mayorca-Torres D., Universidad Mariana, Pasto, 520001, Colombia, SDAS Research Group, Ben Guerir, 47963, Morocco | |
datacite.contributor | Peluffo-Ordóñez D., Mohammed VI Polytechnic University, Ben Guerir, 47963, Morocco, SDAS Research Group, Ben Guerir, 47963, Morocco | |
datacite.contributor | 4th International Conference on Applied Informatics, ICAI 2021 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | D. López-Albán | |
dc.contributor.contactperson | Universidad Mariana, Pasto, 520001, Colombia | |
dc.contributor.contactperson | email: diegoanlopez@umariana.edu.co | |
dc.identifier.doi | 10.1007/978-3-030-89654-6_5 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119001753&doi=10.1007%2f978-3-030-89654-6_5&partnerID=40&md5=4f87d12d91e92c18dbeea1f7bf1229d0 | |
dc.relation.citationendpage | 67 | |
dc.relation.citationstartpage | 55 | |
dc.relation.citationvolume | 1455 CCIS | |
dc.relation.conferencedate | 28 October 2021 through 30 October 2021 | |
dc.relation.conferenceplace | Buenos Aires | |
dc.relation.iscitedby | 1 | |
dc.relation.references | Deafness and Hearing Loss, (2021) | |
dc.relation.references | Al-Hammadi M., Et al., Deep learning-based approach for sign language gesture recognition with efficient hand gesture representation, IEEE Access, 8, pp. 192527-192542, (2020) | |
dc.relation.references | Cheok M.J., Omar Z., Jaward M.H., A review of hand gesture and sign language recognition techniques, Int. J. Mach. Learn. Cybern., 10, 1, pp. 131-153, (2017) | |
dc.relation.references | Zafrulla Z., Brashear H., Starner T., Hamilton H., Presti P., American sign language recognition with the kinect, Proceedings of the 13Th International Conference on Multimodal Interfaces, pp. 279-286, (2011) | |
dc.relation.references | Chong T.W., Lee B.G., American sign language recognition using leap motion controller with a machine learning approach, Sensors, 18, 10, (2018) | |
dc.relation.references | Weichert F., Bachmann D., Rudak B., Fisseler D., Analysis of the accuracy and robustness of the leap motion controller, Sensors, 13, 5, pp. 6380-6393, (2013) | |
dc.relation.references | Lei L., Dashun Q., Design of data-glove and Chinese sign language recognition system based on ARM9, 2015 12Th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Vol. 3, Pp. 1130-1134. IEEE, (2015) | |
dc.relation.references | Marin G., Dominio F., Zanuttigh P., Hand gesture recognition with leap motion and kinect devices, In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 1565-1569 | |
dc.relation.references | Shin H., Kim W.J., Jang K.A., Korean sign language recognition based on image and convolution neural network, Proceedings of the 2Nd International Conference on Image and Graphics Processing, pp. 52-55, (2019) | |
dc.relation.references | Weerasekera C.S., Jaward M.H., Kamrani N., Robust asl fingerspelling recognition using local binary patterns and geometric features, 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-8, (2013) | |
dc.relation.references | Ravi S., Suman M., Kishore P.V.V., Kumar E.K., Kumar M.T.K., Et al., Multi modal spatio temporal cotrained CNNs with single modal testing on RGB-D based sign language gesture recognition, J. Comput. Lang., 52, pp. 88-102, (2019) | |
dc.relation.references | Su Y., Qing Z., Continuous Chinese sign language recognition with CNN-LSTM, In: Proceedings of SPIE 10420, Ninth International Conference on Digital Image Processing (ICDIP 2017) | |
dc.relation.references | Hernandez V., Suzuki T., Venture G., Convolutional and recurrent neural network for human activity recognition: Application on American sign language, Plos ONE, 15, 2, (2020) | |
dc.relation.references | Shanmuganathan V., Yesudhas H.R., Khan M.S., Khari M., Gandomi A.H., R-CNN and wavelet feature extraction for hand gesture recognition with EMG signals, Neural Comput. Appl., 32, 21, pp. 16723-16736, (2020) | |
dc.relation.references | Hernandez V., Suzuki T., Venture G., American Sign Language Classification-Leapmotion-25 Subjects-60 Signs. Mendeley Data, (2018) | |
dc.relation.references | Vysocky A., Grushko S., Oscadal P., Kot T., Babjak J., Janos R., Sukop M., Bobovsky Z., Analysis of precision and stability of hand tracking with leap motion sensor, Sensors, 2020, 20, (2020) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Discrete wavelet transform | |
dc.subject.keywords | Leap motion | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Sign language | |
dc.subject.keywords | Audition | |
dc.subject.keywords | Discrete wavelet transforms | |
dc.subject.keywords | Information filtering | |
dc.subject.keywords | Learning algorithms | |
dc.subject.keywords | Signal reconstruction | |
dc.subject.keywords | Trees (mathematics) | |
dc.subject.keywords | Communications channels | |
dc.subject.keywords | Conventional machines | |
dc.subject.keywords | Discrete-wavelet-transform | |
dc.subject.keywords | Leap motion | |
dc.subject.keywords | Machine learning techniques | |
dc.subject.keywords | Sign language | |
dc.subject.keywords | Sign Language recognition | |
dc.subject.keywords | Social environment | |
dc.subject.keywords | Spatial configuration | |
dc.subject.keywords | Time-frequency characterization | |
dc.subject.keywords | Machine learning | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]