Sign Language Recognition Using Leap Motion Based on Time-Frequency Characterization and Conventional Machine Learning Techniques
Fecha
2021Autor
López-Albán D.
López-Barrera A.
Mayorca-Torres D.
Peluffo-Ordóñez D.
Metadatos
Mostrar el registro completo del ítemResumen
The abstract should briefly summarize the contents of the paper in Sign language is the form of communication between the deaf and hearing population, which uses the gesture-spatial configuration of the hands as a communication channel with their social environment. This work proposes the development of a gesture recognition method associated with sign language from the processing of time series from the spatial position of hand reference points granted by a Leap Motion optical sensor. A methodology applied to a validated American Sign Language (ASL) Dataset which involves the following sections: (i) preprocessing for filtering null frames, (ii) segmentation of relevant information, (iii) time-frequency characterization from the Discrete Wavelet Transform (DWT). Subsequently, the classification is carried out with Machine Learning algorithms (iv). It is graded by a 97.96% rating yield using the proposed methodology with the Fast Tree algorithm. © 2021, Springer Nature Switzerland AG.
Colecciones
- Artículos Scopus [165]
Descripción
UNIVERSIDAD MARIANA
- Calle 18 No. 34-104 Pasto (N)
- (057) + 7244460 - Cel 3127306850
- informacion@umariana.edu.co
- NIT: 800092198-5
- Código SNIES: 1720
- Res. 1362 del 3 de febrero de 1983
NORMATIVIDAD INSTITUCIONAL
PROGRAMAS DE ESTUDIO
Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electronico notificacionesjudiciales@umariana.edu.co
CONVOCATORIASINSCRIPCIÓN DE HOJAS DE VIDAGESTIÓN DEL TALENTO HUMANO
POLÍTICA DE PROTECCIÓN DE DATOS PERSONALESCONDICIONES DE USO U TÉRMINOS LEGALESRÉGIMEN TRIBUTARIO ESPECIAL 2021
Copyright Universidad Mariana
Tecnología implementada por