Kernel-Spectral-Clustering-Driven Motion Segmentation: Rotating-Objects First Trials
Date
2019Author
Oña-Rocha O.
Riascos-Salas J.A.
Marrufo-Rodríguez I.C.
Páez-Jaime M.A.
Mayorca-Torres D.
Ponce-Guevara K.L.
Salazar-Castro J.A.
Peluffo-Ordóñez D.H.
Metadata
Show full item recordAbstract
Time-varying data characterization and classification is a field of great interest in both scientific and technology communities. There exists a wide range of applications and challenging open issues such as: automatic motion segmentation, moving-object tracking, and movement forecasting, among others. In this paper, we study the use of the so-called kernel spectral clustering (KSC) approach to capture the dynamic behavior of frames - representing rotating objects - by means of kernel functions and feature relevance values. On the basis of previous research works, we formally derive a here-called tracking vector able to unveil sequential behavior patterns. As a remarkable outcome, we alternatively introduce an encoded version of the tracking vector by converting into decimal numbers the resulting clustering indicators. To evaluate our approach, we test the studied KSC-based tracking over a rotating object from the COIL 20 database. Preliminary results produce clear evidence about the relationship between the clustering indicators and the starting/ending time instance of a specific dynamic sequence. © Springer Nature Switzerland AG 2019.
Collections
- Artículos Scopus [165]
Description
UNIVERSIDAD MARIANA
- Calle 18 No. 34-104 Pasto (N)
- (057) + 7244460 - Cel 3127306850
- informacion@umariana.edu.co
- NIT: 800092198-5
- Código SNIES: 1720
- Res. 1362 del 3 de febrero de 1983
NORMATIVIDAD INSTITUCIONAL
PROGRAMAS DE ESTUDIO
Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electronico notificacionesjudiciales@umariana.edu.co
CONVOCATORIASINSCRIPCIÓN DE HOJAS DE VIDAGESTIÓN DEL TALENTO HUMANO
POLÍTICA DE PROTECCIÓN DE DATOS PERSONALESCONDICIONES DE USO U TÉRMINOS LEGALESRÉGIMEN TRIBUTARIO ESPECIAL 2021
Copyright Universidad Mariana
Tecnología implementada por