Mostrar el registro sencillo del ítem
Kernel-Spectral-Clustering-Driven Motion Segmentation: Rotating-Objects First Trials
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Oña-Rocha O. | |
dc.contributor.author | Riascos-Salas J.A. | |
dc.contributor.author | Marrufo-Rodríguez I.C. | |
dc.contributor.author | Páez-Jaime M.A. | |
dc.contributor.author | Mayorca-Torres D. | |
dc.contributor.author | Ponce-Guevara K.L. | |
dc.contributor.author | Salazar-Castro J.A. | |
dc.contributor.author | Peluffo-Ordóñez D.H. | |
dc.contributor.editor | Cota V.R. | |
dc.contributor.editor | Dias D.R. | |
dc.contributor.editor | Damázio L.C. | |
dc.contributor.editor | Barone D.A. | |
dc.contributor.other | 2nd Latin American Workshop on Computational Neuroscience, LAWCN 2019 | |
dc.date.accessioned | 2024-12-02T20:15:51Z | |
dc.date.available | 2024-12-02T20:15:51Z | |
dc.date.issued | 2019 | |
dc.identifier.isbn | 978-303036635-3 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28974 | |
dc.description.abstract | Time-varying data characterization and classification is a field of great interest in both scientific and technology communities. There exists a wide range of applications and challenging open issues such as: automatic motion segmentation, moving-object tracking, and movement forecasting, among others. In this paper, we study the use of the so-called kernel spectral clustering (KSC) approach to capture the dynamic behavior of frames - representing rotating objects - by means of kernel functions and feature relevance values. On the basis of previous research works, we formally derive a here-called tracking vector able to unveil sequential behavior patterns. As a remarkable outcome, we alternatively introduce an encoded version of the tracking vector by converting into decimal numbers the resulting clustering indicators. To evaluate our approach, we test the studied KSC-based tracking over a rotating object from the COIL 20 database. Preliminary results produce clear evidence about the relationship between the clustering indicators and the starting/ending time instance of a specific dynamic sequence. © Springer Nature Switzerland AG 2019. | |
dc.description.sponsorship | O. Oña-Rocha—This work is supported by SDAS Research Group (www.sdas-group. com). | |
dc.format | 10 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Communications in Computer and Information Science | |
dc.source | Commun. Comput. Info. Sci. | |
dc.source | Scopus | |
dc.title | Kernel-Spectral-Clustering-Driven Motion Segmentation: Rotating-Objects First Trials | |
datacite.contributor | Universidad Técnica del Norte, Ibarra, Ecuador | |
datacite.contributor | Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador | |
datacite.contributor | SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | Yachay Tech University, Urcuquí, Ecuador | |
datacite.contributor | Universidad Mariana, Pasto, Colombia | |
datacite.contributor | Universidade Federal de Pernambuco, Recife, Brazil | |
datacite.contributor | Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
datacite.contributor | Oña-Rocha O., Universidad Técnica del Norte, Ibarra, Ecuador, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador | |
datacite.contributor | Riascos-Salas J.A., SDAS Research Group, Ibarra, Ecuador, Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
datacite.contributor | Marrufo-Rodríguez I.C., Yachay Tech University, Urcuquí, Ecuador | |
datacite.contributor | Páez-Jaime M.A., Yachay Tech University, Urcuquí, Ecuador | |
datacite.contributor | Mayorca-Torres D., Universidad Mariana, Pasto, Colombia | |
datacite.contributor | Ponce-Guevara K.L., Universidade Federal de Pernambuco, Recife, Brazil | |
datacite.contributor | Salazar-Castro J.A., Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
datacite.contributor | Peluffo-Ordóñez D.H., Universidad Técnica del Norte, Ibarra, Ecuador, Yachay Tech University, Urcuquí, Ecuador | |
datacite.contributor | 2nd Latin American Workshop on Computational Neuroscience, LAWCN 2019 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | J.A. Riascos-Salas | |
dc.contributor.contactperson | Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
dc.contributor.contactperson | email: jarsalas@inf.ufrgs.br | |
dc.contributor.sponsor | Shandong Academy of Sciences, SDAS | |
dc.contributor.sponsor | Capes | |
dc.contributor.sponsor | International Brain Research Organization | |
dc.contributor.sponsor | Unimed | |
dc.contributor.sponsor | Yed | |
dc.identifier.doi | 10.1007/978-3-030-36636-0_3 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076901665&doi=10.1007%2f978-3-030-36636-0_3&partnerID=40&md5=a90e732ca2f6a1d9a55fead01802b9f8 | |
dc.relation.citationendpage | 40 | |
dc.relation.citationstartpage | 30 | |
dc.relation.citationvolume | 1068 CCIS | |
dc.relation.conferencedate | 18 September 2019 through 20 September 2019 | |
dc.relation.conferenceplace | São João Del-Rei | |
dc.relation.iscitedby | 1 | |
dc.relation.references | Sandhu M., Upadhyay S., Krishna M., Medasani S., Motion segmentation using spectral clustering on Indian road scenes, The European Conference on Computer Vision (ECCV) Workshops, (2018) | |
dc.relation.references | Huang W., Zhang P., A Novel Framework to Localize Moving Targets in Video Surveillance Systems via Spectral Clustering | |
dc.relation.references | Aamer B., Et al., Self-Tuning Spectral Clustering for Adaptive Tracking Areas Design in 5G Ultra-Dense Networks. Arxiv E-Prints, Arxiv, 1902, (2019) | |
dc.relation.references | Alzate C., Suykens J., A weighted kernel PCA formulation with out-of-sample extensions for spectral clustering methods, International Joint Conference on Neural Networks, 2006. IJCNN 2006, Pp. 138–144. IEEE, (2006) | |
dc.relation.references | Ona-Rocha O.R., Et al., Automatic motion segmentation via a cumulative kernel representation and spectral clustering, IDEAL 2017. LNCS, 10585, pp. 406-414 | |
dc.relation.references | Peluffo Ordonez D.H., Lee J.A., Verleysen M., Rodriguez J.L., Castellanos-Dominguez G., Unsupervised relevance analysis for feature extraction and selection. A distance-based approach for feature relevance, 3Rd International Conference on Pattern Recognition Applications and Methods (ICPRAM 2014, (2015) | |
dc.relation.references | Nene S.A., Nayar S.K., Murase H., Columbia object image library, COIL-20, Technical Report, (1996) | |
dc.relation.references | Langone R., Mall R., Alzate C., Suykens J.A.K., Kernel spectral clustering and applications, Unsupervised Learning Algorithms, pp. 135-161, (2016) | |
dc.relation.references | Diego Peluffo-Ordonez E.M.-O., Theoretical developments for interpreting kernel spectral clustering from alternative viewpoints, Adv. Sci. Technol. Eng. Syst. J., 2, 3, pp. 1670-1676, (2017) | |
dc.relation.references | Alzate C., Suykens J.A.K., Multiway spectral clustering with out-of-sample extensions through weighted Kernel PCA, IEEE Trans. Pattern Anal. Mach. Intell., 32, 2, pp. 335-347, (2010) | |
dc.relation.references | Wolf L., Shashua A., Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weight-based approach, J. Mach. Learn. Res., 6, pp. 1855-1887, (2005) | |
dc.relation.references | Alzate S.J.C., Highly Sparse Kernel Spectral Clustering with Predictive Out-Of-Sample Extensions, (2010) | |
dc.relation.references | Peluffo-Ordonez D.H., Garcia-Vega S., Alvarez-Meza A.M., Castellanos-Dominguez C.G., Kernel spectral clustering for dynamic data, CIARP 2013. LNCS, 8258, pp. 238-245, (2013) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Kernels | |
dc.subject.keywords | Motion tracking | |
dc.subject.keywords | Spectral clustering | |
dc.subject.keywords | Clustering algorithms | |
dc.subject.keywords | Neurology | |
dc.subject.keywords | Dynamic sequences | |
dc.subject.keywords | Feature relevance | |
dc.subject.keywords | Kernels | |
dc.subject.keywords | Motion segmentation | |
dc.subject.keywords | Motion tracking | |
dc.subject.keywords | Movement Forecasting | |
dc.subject.keywords | Moving object tracking | |
dc.subject.keywords | Spectral clustering | |
dc.subject.keywords | Motion analysis | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]