Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorOña-Rocha O.
dc.contributor.authorRiascos-Salas J.A.
dc.contributor.authorMarrufo-Rodríguez I.C.
dc.contributor.authorPáez-Jaime M.A.
dc.contributor.authorMayorca-Torres D.
dc.contributor.authorPonce-Guevara K.L.
dc.contributor.authorSalazar-Castro J.A.
dc.contributor.authorPeluffo-Ordóñez D.H.
dc.contributor.editorCota V.R.
dc.contributor.editorDias D.R.
dc.contributor.editorDamázio L.C.
dc.contributor.editorBarone D.A.
dc.contributor.other2nd Latin American Workshop on Computational Neuroscience, LAWCN 2019
dc.date.accessioned2024-12-02T20:15:51Z
dc.date.available2024-12-02T20:15:51Z
dc.date.issued2019
dc.identifier.isbn978-303036635-3
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28974
dc.description.abstractTime-varying data characterization and classification is a field of great interest in both scientific and technology communities. There exists a wide range of applications and challenging open issues such as: automatic motion segmentation, moving-object tracking, and movement forecasting, among others. In this paper, we study the use of the so-called kernel spectral clustering (KSC) approach to capture the dynamic behavior of frames - representing rotating objects - by means of kernel functions and feature relevance values. On the basis of previous research works, we formally derive a here-called tracking vector able to unveil sequential behavior patterns. As a remarkable outcome, we alternatively introduce an encoded version of the tracking vector by converting into decimal numbers the resulting clustering indicators. To evaluate our approach, we test the studied KSC-based tracking over a rotating object from the COIL 20 database. Preliminary results produce clear evidence about the relationship between the clustering indicators and the starting/ending time instance of a specific dynamic sequence. © Springer Nature Switzerland AG 2019.
dc.description.sponsorshipO. Oña-Rocha—This work is supported by SDAS Research Group (www.sdas-group. com).
dc.format10
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceCommunications in Computer and Information Science
dc.sourceCommun. Comput. Info. Sci.
dc.sourceScopus
dc.titleKernel-Spectral-Clustering-Driven Motion Segmentation: Rotating-Objects First Trials
datacite.contributorUniversidad Técnica del Norte, Ibarra, Ecuador
datacite.contributorUniversidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador
datacite.contributorSDAS Research Group, Ibarra, Ecuador
datacite.contributorYachay Tech University, Urcuquí, Ecuador
datacite.contributorUniversidad Mariana, Pasto, Colombia
datacite.contributorUniversidade Federal de Pernambuco, Recife, Brazil
datacite.contributorCorporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributorOña-Rocha O., Universidad Técnica del Norte, Ibarra, Ecuador, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador
datacite.contributorRiascos-Salas J.A., SDAS Research Group, Ibarra, Ecuador, Corporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributorMarrufo-Rodríguez I.C., Yachay Tech University, Urcuquí, Ecuador
datacite.contributorPáez-Jaime M.A., Yachay Tech University, Urcuquí, Ecuador
datacite.contributorMayorca-Torres D., Universidad Mariana, Pasto, Colombia
datacite.contributorPonce-Guevara K.L., Universidade Federal de Pernambuco, Recife, Brazil
datacite.contributorSalazar-Castro J.A., Corporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributorPeluffo-Ordóñez D.H., Universidad Técnica del Norte, Ibarra, Ecuador, Yachay Tech University, Urcuquí, Ecuador
datacite.contributor2nd Latin American Workshop on Computational Neuroscience, LAWCN 2019
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonJ.A. Riascos-Salas
dc.contributor.contactpersonCorporación Universitaria Autónoma de Nariño, Pasto, Colombia
dc.contributor.contactpersonemail: jarsalas@inf.ufrgs.br
dc.contributor.sponsorShandong Academy of Sciences, SDAS
dc.contributor.sponsorCapes
dc.contributor.sponsorInternational Brain Research Organization
dc.contributor.sponsorUnimed
dc.contributor.sponsorYed
dc.identifier.doi10.1007/978-3-030-36636-0_3
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076901665&doi=10.1007%2f978-3-030-36636-0_3&partnerID=40&md5=a90e732ca2f6a1d9a55fead01802b9f8
dc.relation.citationendpage40
dc.relation.citationstartpage30
dc.relation.citationvolume1068 CCIS
dc.relation.conferencedate18 September 2019 through 20 September 2019
dc.relation.conferenceplaceSão João Del-Rei
dc.relation.iscitedby1
dc.relation.referencesSandhu M., Upadhyay S., Krishna M., Medasani S., Motion segmentation using spectral clustering on Indian road scenes, The European Conference on Computer Vision (ECCV) Workshops, (2018)
dc.relation.referencesHuang W., Zhang P., A Novel Framework to Localize Moving Targets in Video Surveillance Systems via Spectral Clustering
dc.relation.referencesAamer B., Et al., Self-Tuning Spectral Clustering for Adaptive Tracking Areas Design in 5G Ultra-Dense Networks. Arxiv E-Prints, Arxiv, 1902, (2019)
dc.relation.referencesAlzate C., Suykens J., A weighted kernel PCA formulation with out-of-sample extensions for spectral clustering methods, International Joint Conference on Neural Networks, 2006. IJCNN 2006, Pp. 138–144. IEEE, (2006)
dc.relation.referencesOna-Rocha O.R., Et al., Automatic motion segmentation via a cumulative kernel representation and spectral clustering, IDEAL 2017. LNCS, 10585, pp. 406-414
dc.relation.referencesPeluffo Ordonez D.H., Lee J.A., Verleysen M., Rodriguez J.L., Castellanos-Dominguez G., Unsupervised relevance analysis for feature extraction and selection. A distance-based approach for feature relevance, 3Rd International Conference on Pattern Recognition Applications and Methods (ICPRAM 2014, (2015)
dc.relation.referencesNene S.A., Nayar S.K., Murase H., Columbia object image library, COIL-20, Technical Report, (1996)
dc.relation.referencesLangone R., Mall R., Alzate C., Suykens J.A.K., Kernel spectral clustering and applications, Unsupervised Learning Algorithms, pp. 135-161, (2016)
dc.relation.referencesDiego Peluffo-Ordonez E.M.-O., Theoretical developments for interpreting kernel spectral clustering from alternative viewpoints, Adv. Sci. Technol. Eng. Syst. J., 2, 3, pp. 1670-1676, (2017)
dc.relation.referencesAlzate C., Suykens J.A.K., Multiway spectral clustering with out-of-sample extensions through weighted Kernel PCA, IEEE Trans. Pattern Anal. Mach. Intell., 32, 2, pp. 335-347, (2010)
dc.relation.referencesWolf L., Shashua A., Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weight-based approach, J. Mach. Learn. Res., 6, pp. 1855-1887, (2005)
dc.relation.referencesAlzate S.J.C., Highly Sparse Kernel Spectral Clustering with Predictive Out-Of-Sample Extensions, (2010)
dc.relation.referencesPeluffo-Ordonez D.H., Garcia-Vega S., Alvarez-Meza A.M., Castellanos-Dominguez C.G., Kernel spectral clustering for dynamic data, CIARP 2013. LNCS, 8258, pp. 238-245, (2013)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsKernels
dc.subject.keywordsMotion tracking
dc.subject.keywordsSpectral clustering
dc.subject.keywordsClustering algorithms
dc.subject.keywordsNeurology
dc.subject.keywordsDynamic sequences
dc.subject.keywordsFeature relevance
dc.subject.keywordsKernels
dc.subject.keywordsMotion segmentation
dc.subject.keywordsMotion tracking
dc.subject.keywordsMovement Forecasting
dc.subject.keywordsMoving object tracking
dc.subject.keywordsSpectral clustering
dc.subject.keywordsMotion analysis
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem