Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorLopez J.H.
dc.contributor.authorSchwarz J.M.
dc.date.accessioned2024-12-02T20:15:40Z
dc.date.available2024-12-02T20:15:40Z
dc.date.issued2017
dc.identifier.issn24700045
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28934
dc.description.abstractHyperbolic lattices interpolate between finite-dimensional lattices and Bethe lattices, and they are interesting in their own right, with ordinary percolation exhibiting not one but two phase transitions. We study four constraint percolation models - k-core percolation (for k=1,2,3) and force-balance percolation - on several tessellations of the hyperbolic plane. By comparing these four different models, our numerical data suggest that all of the k-core models, even for k=3, exhibit behavior similar to ordinary percolation, while the force-balance percolation transition is discontinuous. We also provide proof, for some hyperbolic lattices, of the existence of a critical probability that is less than unity for the force-balance model, so that we can place our interpretation of the numerical data for this model on a more rigorous footing. Finally, we discuss improved numerical methods for determining the two critical probabilities on the hyperbolic lattice for the k-core percolation models. © 2017 American Physical Society.
dc.description.sponsorshipJ.M.S. acknowledges support from NSF-DMR-CMMT-1507938 and the Soft Matter Program at Syracuse University. J.H.L acknowledges financial support from the Centro de Investigaciones CEI, Universidad Mariana.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourcePhysical Review E
dc.sourcePhys. Rev. E
dc.sourceScopus
dc.titleConstraint percolation on hyperbolic lattices
datacite.contributorDepartment of Civil Engineering, Universidad Mariana, Pasto, 520002, Colombia
datacite.contributorDepartment of Physics, Syracuse University, Syracuse, 13244, NY, United States
datacite.contributorSyracuse Biomaterials Institute, Syracuse, 13244, NY, United States
datacite.contributorLopez J.H., Department of Civil Engineering, Universidad Mariana, Pasto, 520002, Colombia
datacite.contributorSchwarz J.M., Department of Physics, Syracuse University, Syracuse, 13244, NY, United States, Syracuse Biomaterials Institute, Syracuse, 13244, NY, United States
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.sponsorCentro de Investigaciones CEI
dc.contributor.sponsorNSF-DMR-CMMT-1507938
dc.contributor.sponsorUniversidad Mariana
dc.contributor.sponsorSyracuse University, SU
dc.identifier.doi10.1103/PhysRevE.96.052108
dc.identifier.instnameUniversidad Mariana
dc.identifier.local52108
dc.identifier.pissn29347694
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85033593328&doi=10.1103%2fPhysRevE.96.052108&partnerID=40&md5=3e000b7f1fce0ed93ca3aefff430920a
dc.relation.citationvolume96
dc.relation.iscitedby0
dc.relation.referencesCarroll S., Spacetime and Geometry: An Introduction to General Relativity, (2003)
dc.relation.referencesFleury P., Dupuy H., Uzan J.-P., Can all Cosmological Observations be Accurately Interpreted with a Unique Geometry, Phys. Rev. Lett., 111, (2013)
dc.relation.referencesMaia M.D., Geometry of the Fundamental Interactions: On Riemann's Legacy to High Energy Physics and Cosmology, (2011)
dc.relation.referencesBadyopadhyay P., Geometry, Topology and Quantum Field Theory, (2003)
dc.relation.referencesNelson D.R., Defects and Geometry in Condensed Matter Physics, (2002)
dc.relation.referencesKamien R.D., The geometry of soft materials: A primer, Rev. Mod. Phys., 74, (2011)
dc.relation.referencesKallosh R., Linde A., C. R. Phys., 16, (2015)
dc.relation.referencesSpohn H., The Lorentz process converges to a random flight process, Commun. Math. Phys., 60, (1978)
dc.relation.referencesOrsingher E., Ricciuti C., Sisti F., Motion among random obstacles on a hyperbolic space, J. Stat. Phys., 162, (2016)
dc.relation.referencesKung W., Geometry and Phase Transitions in Colloids and Polymers, (2009)
dc.relation.referencesRuppeiner G., Sahay A., Sarkar T., Sengupta G., Thermodynamic geometry, phase transitions, and the Widom line, Phys. Rev. e, 86, (2012)
dc.relation.referencesRietman R., Nienhuis B., Oitmaa J., The Ising model on hyperlattices, J. Phys. A, 25, (1992)
dc.relation.referencesWu C.C., Ising models on hyperbolic graphs, J. Stat. Phys., 85, (1996)
dc.relation.referencesGandolfo D., Ruiz J., Shlosman S., A manifold of pure Gibbs states of the Ising model on the Lobachevsky plane, Commun. Math. Phys., 334, (2015)
dc.relation.referencesKrcmar R., Iharagi T., Gendiar A., Nishino T., Tricritical point of the (Equation presented) Ising model on a hyperbolic lattice, Phys. Rev. e, 78, (2008)
dc.relation.referencesKrcmar R., Gendiar A., Ueda K., Nishino T., Ising model on a hyperbolic lattice studied by the corner transfer matrix renormalization group method, J. Phys. A, 41, (2008)
dc.relation.referencesShima H., Sakaniwa Y., Geometric effects on critical behaviours of the Ising model, J. Phys. A, 39, (2006)
dc.relation.referencesGu H., Ziff R.M., Crossing on hyperbolic lattices, Phys. Rev. e, 85, (2012)
dc.relation.referencesBaek S.K., Minnhagen P., Kim B.J., Surface and bulk criticality in midpoint percolation, Phys. Rev. e, 81, (2010)
dc.relation.referencesBaek S.K., Minnhagen P., Kim B.J., Percolation on hyperbolic lattices, Phys. Rev. e, 79, (2009)
dc.relation.referencesBenjamini I., Schramm O., Percolation in the hyperbolic plane, J. Am. Math. Soc., 14, (2000)
dc.relation.referencesTarjus G., Kivelson S.A., Nussinov Z., Viot P., The frustration-based approach to supercooled liquids and the glass transition: A review and critical assessment, J. Phys.: Condens. Matter, 17, (2005)
dc.relation.referencesModes C.D., Kamien R.D., Geometrical frustration in two dimensions: Idealizations and realizations of a hard-disk fluid in negative curvature, Phys. Rev. e, 77, (2008)
dc.relation.referencesCoxeter H.S.M., Regular Polytopes, (1973)
dc.relation.referencesRaffield J., Richards H.L., Molchanoff J., Rikvold P.A., Phase separation on a hyperbolic lattice, Phys. Proc., 53, (2014)
dc.relation.referencesAnderson J., Hyperbolic Geometry, (2008)
dc.relation.referencesChalupa J., Leath P.L., Reich G.R., Bootstrap percolation on a Bethe lattice, J. Phys. C, 12, (1979)
dc.relation.referencesSchwarz J.M., Liu A.J., Chayes L.Q., The onset of jamming as the sudden emergence of an infinite (Equation presented)-core cluster, Europhys. Lett., 73, (2006)
dc.relation.referencesJeng M., Schwarz J.M., Force-balance percolation, Phys. Rev. e, 81, (2010)
dc.relation.referencesAlexander S., Amorphous solids: Their structure, lattice dynamics, and elasticity, Phys. Rep., 296, (1998)
dc.relation.referencesO'Hern C.S., Silbert L.E., Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. e, 68, (2003)
dc.relation.referencesMedeiros M.C., Chaves C.M., Physica A, 234, (1997)
dc.relation.referencesVan Enter A.C.D., Proof of Straley's argument for bootstrap percolation, J. Stat. Phys., 48, (1987)
dc.relation.referencesO'Hern C.S., Langer S.A., Liu A.J., Nagel S.R., Random Packings of Frictionless Particles, Phys. Rev. Lett., 88, (2002)
dc.relation.referencesSausset F., Toninelli C., Biroli G., Tarjus G., Bootstrap percolation and kinetically constrained models on hyperbolic lattices, J. Stat. Phys., 138, (2010)
dc.relation.referencesDunham D., Hyperbolic symmetry, Comput. Math. Appl., 12, (1986)
dc.relation.referencesSausset F., Tarjus G., Periodic boundary conditions on the pseudosphere, J. Phys. A, 40, (2007)
dc.relation.referencesManna S.S., Abelian cascade dynamics in bootstrap percolation, Physica A, 261, (1998)
dc.relation.referencesCzajkowski J., Clusters in middle-phase percolation on hyperbolic plane, Banach Center Publ., 96, (2012)
dc.relation.referencesLee J.F., Baek S.K., Bounds of percolation thresholds on hyperbolic lattices, Phys. Rev. e, 86, (2012)
dc.relation.referencesCardy J.L., Critical percolation in finite geometries, J. Phys. A, 25, (1992)
dc.relation.referencesStauffer D., Aharony A., Introduction to Percolation Theory, (1992)
dc.relation.referencesBaek S.K., Upper transition point for percolation on the enhanced binary tree: A sharpened lower bound, Phys. Rev. e, 85, (2012)
dc.relation.referencesHarris A.B., Field-theoretic approach to biconnectedness in percolating systems, Phys. Rev. B, 28, (1983)
dc.relation.referencesHarris A.B., Schwarz J.M., Phys. Rev. e, 72, (2005)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsNumerical methods
dc.subject.keywordsPercolation (solid state)
dc.subject.keywordsSolvents
dc.subject.keywordsCritical probabilities
dc.subject.keywordsFinite dimensional
dc.subject.keywordsForce balance models
dc.subject.keywordsForce balances
dc.subject.keywordsHyperbolic plane
dc.subject.keywordsNumerical data
dc.subject.keywordsPercolation models
dc.subject.keywordsPercolation transition
dc.subject.keywordsarticle
dc.subject.keywordsprobability
dc.subject.keywordsNumerical models
dc.subject.keywordsNumerical methods
dc.subject.keywordsPercolation (solid state)
dc.subject.keywordsSolvents
dc.subject.keywordsCritical probabilities
dc.subject.keywordsFinite dimensional
dc.subject.keywordsForce balance models
dc.subject.keywordsForce balances
dc.subject.keywordsHyperbolic plane
dc.subject.keywordsNumerical data
dc.subject.keywordsPercolation models
dc.subject.keywordsPercolation transition
dc.subject.keywordsarticle
dc.subject.keywordsprobability
dc.subject.keywordsNumerical models
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue5


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem