Mostrar el registro sencillo del ítem
Constraint percolation on hyperbolic lattices
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Lopez J.H. | |
dc.contributor.author | Schwarz J.M. | |
dc.date.accessioned | 2024-12-02T20:15:40Z | |
dc.date.available | 2024-12-02T20:15:40Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 24700045 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28934 | |
dc.description.abstract | Hyperbolic lattices interpolate between finite-dimensional lattices and Bethe lattices, and they are interesting in their own right, with ordinary percolation exhibiting not one but two phase transitions. We study four constraint percolation models - k-core percolation (for k=1,2,3) and force-balance percolation - on several tessellations of the hyperbolic plane. By comparing these four different models, our numerical data suggest that all of the k-core models, even for k=3, exhibit behavior similar to ordinary percolation, while the force-balance percolation transition is discontinuous. We also provide proof, for some hyperbolic lattices, of the existence of a critical probability that is less than unity for the force-balance model, so that we can place our interpretation of the numerical data for this model on a more rigorous footing. Finally, we discuss improved numerical methods for determining the two critical probabilities on the hyperbolic lattice for the k-core percolation models. © 2017 American Physical Society. | |
dc.description.sponsorship | J.M.S. acknowledges support from NSF-DMR-CMMT-1507938 and the Soft Matter Program at Syracuse University. J.H.L acknowledges financial support from the Centro de Investigaciones CEI, Universidad Mariana. | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Physical Review E | |
dc.source | Phys. Rev. E | |
dc.source | Scopus | |
dc.title | Constraint percolation on hyperbolic lattices | |
datacite.contributor | Department of Civil Engineering, Universidad Mariana, Pasto, 520002, Colombia | |
datacite.contributor | Department of Physics, Syracuse University, Syracuse, 13244, NY, United States | |
datacite.contributor | Syracuse Biomaterials Institute, Syracuse, 13244, NY, United States | |
datacite.contributor | Lopez J.H., Department of Civil Engineering, Universidad Mariana, Pasto, 520002, Colombia | |
datacite.contributor | Schwarz J.M., Department of Physics, Syracuse University, Syracuse, 13244, NY, United States, Syracuse Biomaterials Institute, Syracuse, 13244, NY, United States | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.sponsor | Centro de Investigaciones CEI | |
dc.contributor.sponsor | NSF-DMR-CMMT-1507938 | |
dc.contributor.sponsor | Universidad Mariana | |
dc.contributor.sponsor | Syracuse University, SU | |
dc.identifier.doi | 10.1103/PhysRevE.96.052108 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | 52108 | |
dc.identifier.pissn | 29347694 | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033593328&doi=10.1103%2fPhysRevE.96.052108&partnerID=40&md5=3e000b7f1fce0ed93ca3aefff430920a | |
dc.relation.citationvolume | 96 | |
dc.relation.iscitedby | 0 | |
dc.relation.references | Carroll S., Spacetime and Geometry: An Introduction to General Relativity, (2003) | |
dc.relation.references | Fleury P., Dupuy H., Uzan J.-P., Can all Cosmological Observations be Accurately Interpreted with a Unique Geometry, Phys. Rev. Lett., 111, (2013) | |
dc.relation.references | Maia M.D., Geometry of the Fundamental Interactions: On Riemann's Legacy to High Energy Physics and Cosmology, (2011) | |
dc.relation.references | Badyopadhyay P., Geometry, Topology and Quantum Field Theory, (2003) | |
dc.relation.references | Nelson D.R., Defects and Geometry in Condensed Matter Physics, (2002) | |
dc.relation.references | Kamien R.D., The geometry of soft materials: A primer, Rev. Mod. Phys., 74, (2011) | |
dc.relation.references | Kallosh R., Linde A., C. R. Phys., 16, (2015) | |
dc.relation.references | Spohn H., The Lorentz process converges to a random flight process, Commun. Math. Phys., 60, (1978) | |
dc.relation.references | Orsingher E., Ricciuti C., Sisti F., Motion among random obstacles on a hyperbolic space, J. Stat. Phys., 162, (2016) | |
dc.relation.references | Kung W., Geometry and Phase Transitions in Colloids and Polymers, (2009) | |
dc.relation.references | Ruppeiner G., Sahay A., Sarkar T., Sengupta G., Thermodynamic geometry, phase transitions, and the Widom line, Phys. Rev. e, 86, (2012) | |
dc.relation.references | Rietman R., Nienhuis B., Oitmaa J., The Ising model on hyperlattices, J. Phys. A, 25, (1992) | |
dc.relation.references | Wu C.C., Ising models on hyperbolic graphs, J. Stat. Phys., 85, (1996) | |
dc.relation.references | Gandolfo D., Ruiz J., Shlosman S., A manifold of pure Gibbs states of the Ising model on the Lobachevsky plane, Commun. Math. Phys., 334, (2015) | |
dc.relation.references | Krcmar R., Iharagi T., Gendiar A., Nishino T., Tricritical point of the (Equation presented) Ising model on a hyperbolic lattice, Phys. Rev. e, 78, (2008) | |
dc.relation.references | Krcmar R., Gendiar A., Ueda K., Nishino T., Ising model on a hyperbolic lattice studied by the corner transfer matrix renormalization group method, J. Phys. A, 41, (2008) | |
dc.relation.references | Shima H., Sakaniwa Y., Geometric effects on critical behaviours of the Ising model, J. Phys. A, 39, (2006) | |
dc.relation.references | Gu H., Ziff R.M., Crossing on hyperbolic lattices, Phys. Rev. e, 85, (2012) | |
dc.relation.references | Baek S.K., Minnhagen P., Kim B.J., Surface and bulk criticality in midpoint percolation, Phys. Rev. e, 81, (2010) | |
dc.relation.references | Baek S.K., Minnhagen P., Kim B.J., Percolation on hyperbolic lattices, Phys. Rev. e, 79, (2009) | |
dc.relation.references | Benjamini I., Schramm O., Percolation in the hyperbolic plane, J. Am. Math. Soc., 14, (2000) | |
dc.relation.references | Tarjus G., Kivelson S.A., Nussinov Z., Viot P., The frustration-based approach to supercooled liquids and the glass transition: A review and critical assessment, J. Phys.: Condens. Matter, 17, (2005) | |
dc.relation.references | Modes C.D., Kamien R.D., Geometrical frustration in two dimensions: Idealizations and realizations of a hard-disk fluid in negative curvature, Phys. Rev. e, 77, (2008) | |
dc.relation.references | Coxeter H.S.M., Regular Polytopes, (1973) | |
dc.relation.references | Raffield J., Richards H.L., Molchanoff J., Rikvold P.A., Phase separation on a hyperbolic lattice, Phys. Proc., 53, (2014) | |
dc.relation.references | Anderson J., Hyperbolic Geometry, (2008) | |
dc.relation.references | Chalupa J., Leath P.L., Reich G.R., Bootstrap percolation on a Bethe lattice, J. Phys. C, 12, (1979) | |
dc.relation.references | Schwarz J.M., Liu A.J., Chayes L.Q., The onset of jamming as the sudden emergence of an infinite (Equation presented)-core cluster, Europhys. Lett., 73, (2006) | |
dc.relation.references | Jeng M., Schwarz J.M., Force-balance percolation, Phys. Rev. e, 81, (2010) | |
dc.relation.references | Alexander S., Amorphous solids: Their structure, lattice dynamics, and elasticity, Phys. Rep., 296, (1998) | |
dc.relation.references | O'Hern C.S., Silbert L.E., Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. e, 68, (2003) | |
dc.relation.references | Medeiros M.C., Chaves C.M., Physica A, 234, (1997) | |
dc.relation.references | Van Enter A.C.D., Proof of Straley's argument for bootstrap percolation, J. Stat. Phys., 48, (1987) | |
dc.relation.references | O'Hern C.S., Langer S.A., Liu A.J., Nagel S.R., Random Packings of Frictionless Particles, Phys. Rev. Lett., 88, (2002) | |
dc.relation.references | Sausset F., Toninelli C., Biroli G., Tarjus G., Bootstrap percolation and kinetically constrained models on hyperbolic lattices, J. Stat. Phys., 138, (2010) | |
dc.relation.references | Dunham D., Hyperbolic symmetry, Comput. Math. Appl., 12, (1986) | |
dc.relation.references | Sausset F., Tarjus G., Periodic boundary conditions on the pseudosphere, J. Phys. A, 40, (2007) | |
dc.relation.references | Manna S.S., Abelian cascade dynamics in bootstrap percolation, Physica A, 261, (1998) | |
dc.relation.references | Czajkowski J., Clusters in middle-phase percolation on hyperbolic plane, Banach Center Publ., 96, (2012) | |
dc.relation.references | Lee J.F., Baek S.K., Bounds of percolation thresholds on hyperbolic lattices, Phys. Rev. e, 86, (2012) | |
dc.relation.references | Cardy J.L., Critical percolation in finite geometries, J. Phys. A, 25, (1992) | |
dc.relation.references | Stauffer D., Aharony A., Introduction to Percolation Theory, (1992) | |
dc.relation.references | Baek S.K., Upper transition point for percolation on the enhanced binary tree: A sharpened lower bound, Phys. Rev. e, 85, (2012) | |
dc.relation.references | Harris A.B., Field-theoretic approach to biconnectedness in percolating systems, Phys. Rev. B, 28, (1983) | |
dc.relation.references | Harris A.B., Schwarz J.M., Phys. Rev. e, 72, (2005) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Numerical methods | |
dc.subject.keywords | Percolation (solid state) | |
dc.subject.keywords | Solvents | |
dc.subject.keywords | Critical probabilities | |
dc.subject.keywords | Finite dimensional | |
dc.subject.keywords | Force balance models | |
dc.subject.keywords | Force balances | |
dc.subject.keywords | Hyperbolic plane | |
dc.subject.keywords | Numerical data | |
dc.subject.keywords | Percolation models | |
dc.subject.keywords | Percolation transition | |
dc.subject.keywords | article | |
dc.subject.keywords | probability | |
dc.subject.keywords | Numerical models | |
dc.subject.keywords | Numerical methods | |
dc.subject.keywords | Percolation (solid state) | |
dc.subject.keywords | Solvents | |
dc.subject.keywords | Critical probabilities | |
dc.subject.keywords | Finite dimensional | |
dc.subject.keywords | Force balance models | |
dc.subject.keywords | Force balances | |
dc.subject.keywords | Hyperbolic plane | |
dc.subject.keywords | Numerical data | |
dc.subject.keywords | Percolation models | |
dc.subject.keywords | Percolation transition | |
dc.subject.keywords | article | |
dc.subject.keywords | probability | |
dc.subject.keywords | Numerical models | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.spa | Artículo científico | |
dc.relation.citationissue | 5 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]