Constraint percolation on hyperbolic lattices
Abstract
Hyperbolic lattices interpolate between finite-dimensional lattices and Bethe lattices, and they are interesting in their own right, with ordinary percolation exhibiting not one but two phase transitions. We study four constraint percolation models - k-core percolation (for k=1,2,3) and force-balance percolation - on several tessellations of the hyperbolic plane. By comparing these four different models, our numerical data suggest that all of the k-core models, even for k=3, exhibit behavior similar to ordinary percolation, while the force-balance percolation transition is discontinuous. We also provide proof, for some hyperbolic lattices, of the existence of a critical probability that is less than unity for the force-balance model, so that we can place our interpretation of the numerical data for this model on a more rigorous footing. Finally, we discuss improved numerical methods for determining the two critical probabilities on the hyperbolic lattice for the k-core percolation models. © 2017 American Physical Society.
Collections
- Artículos Scopus [165]
Description
UNIVERSIDAD MARIANA
- Calle 18 No. 34-104 Pasto (N)
- (057) + 7244460 - Cel 3127306850
- informacion@umariana.edu.co
- NIT: 800092198-5
- Código SNIES: 1720
- Res. 1362 del 3 de febrero de 1983
NORMATIVIDAD INSTITUCIONAL
PROGRAMAS DE ESTUDIO
Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electronico notificacionesjudiciales@umariana.edu.co
CONVOCATORIASINSCRIPCIÓN DE HOJAS DE VIDAGESTIÓN DEL TALENTO HUMANO
POLÍTICA DE PROTECCIÓN DE DATOS PERSONALESCONDICIONES DE USO U TÉRMINOS LEGALESRÉGIMEN TRIBUTARIO ESPECIAL 2021
Copyright Universidad Mariana
Tecnología implementada por