Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorMichelitsch T.
dc.contributor.authorCollet B.
dc.contributor.authorRiascos A.P.
dc.contributor.authorNowakowski A.
dc.contributor.authorNicolleau F.
dc.date.accessioned2024-12-02T20:15:28Z
dc.date.available2024-12-02T20:15:28Z
dc.date.issued2018
dc.identifier.issn18698433
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28894
dc.description.abstractThe study of random walks on networks has become a rapidly growing research field, last but not least driven by the increasing interest in the dynamics of online networks. In the development of fast(er) random motion based search strategies a key issue are first passage quantities: How long does it take a walker starting from a site p0 to reach ‘by chance’ a site p for the first time? Further important are recurrence and transience features of a random walk: A random walker starting at p0 will he ever reach site p (ever return to p0)? How often a site is visited? Here we investigate Markovian random walks generated by fractional (Laplacian) generator matrices Lα/2 (0 < α ≤ 2) where L stands for ‘simple’ Laplacian matrices. This walk we refer to as ‘Fractional Random Walk’ (FRW). In contrast to classical Pólya type walks where only local steps to next neighbor sites are possible, the FRW allows nonlocal long-range moves where a remarkably rich dynamics and new features arise. We analyze recurrence and transience features of the FRW on infinite d-dimensional simple cubic lattices. We deduce by means of lattice Green’s function (probability generating functions) the mean residence times (MRT) of the walker at preselected sites. For the infinite 1D lattice (infinite ring) we obtain for the transient regime (0 < α < 1) closed form expressions for these characteristics. The lattice Green’s function on infinite lattices existing in the transient regime fulfills Riesz potential asymptotics being a landmark of anomalous diffusion, i.e. random motion (Lévy flights) where the step lengths are drawn from a Lévy α-stable distribution. © 2018, Springer International Publishing AG, part of Springer Nature.
dc.format25
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceAdvanced Structured Materials
dc.sourceAdv. Struct. Mater.
dc.sourceScopus
dc.titleOn recurrence and transience of fractional random walks in lattices
datacite.contributorCentre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d’Alembert, Sorbonne Université, Paris, F-75005, France
datacite.contributorDepartment of Civil Engineering, Universidad Mariana San Juan de Pasto, Pasto, Colombia
datacite.contributorSheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
datacite.contributorMichelitsch T., Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d’Alembert, Sorbonne Université, Paris, F-75005, France
datacite.contributorCollet B., Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d’Alembert, Sorbonne Université, Paris, F-75005, France
datacite.contributorRiascos A.P., Department of Civil Engineering, Universidad Mariana San Juan de Pasto, Pasto, Colombia
datacite.contributorNowakowski A., Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
datacite.contributorNicolleau F., Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_3248
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonT. Michelitsch
dc.contributor.contactpersonCentre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d’Alembert, Sorbonne Université, Paris, F-75005, France
dc.contributor.contactpersonemail: michel@lmm.jussieu.fr
dc.identifier.doi10.1007/978-3-319-72440-9_29
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85044625832&doi=10.1007%2f978-3-319-72440-9_29&partnerID=40&md5=5db98ec8025e86b3b2ca159e340ff638
dc.relation.citationendpage580
dc.relation.citationstartpage555
dc.relation.citationvolume89
dc.relation.iscitedby5
dc.relation.referencesAlbert R., Barabasi A.L., Statistical mechanics of complex networks, Rev Mod Phys, 74, pp. 47-97, (2002)
dc.relation.referencesBenichou O., Loverdo C., Moreau M., Voituriez R., Intermittent search strategies, Rev Mod Phys, 83, pp. 81-129, (2011)
dc.relation.referencesBlumenthal R.M., Getoor R.K., Ray D.B., On the distribution of first hits for the symmetric stable processes, Transactions of the American Mathematical Society, 99, 3, pp. 540-554, (1961)
dc.relation.referencesChechkin A.V., Metzler R., Klafter J., Gonchar V.Y., Introduction to the theory of lévy flights, Anomalous Transport: Foundations and Applications, pp. 129-162, (2008)
dc.relation.referencesDoyle P.G., Laurie Snell J., Random Walks and Electric Networks, Carus Mathematical Monographs, 22, (1984)
dc.relation.referencesDybiec B., Gudowska-Nowak E., Barkai E., Dubkov A.A., Lévy flights versus Lévy walks in bounded domains, Phys Rev E, 95, 5, (2017)
dc.relation.referencesFeller W., An Introduction to Probability Theory and Its Applications, (1950)
dc.relation.referencesFerraro M., Zaninetti L., Mean number of visits to sites in Levy flights, Phys Rev E, 73, 5, (2006)
dc.relation.referencesGetoor R.K., First passage times for symmetric stable processes in space, Transactions of the American Mathematical Society, 101, 1, pp. 75-90, (1961)
dc.relation.referencesGoncalves B., Perra N., Vespignani A., Modeling users’ activity on twitter networks: Validation of dunbar’s number, PLOS ONE, 6, 8, (2011)
dc.relation.referencesHudges B.D., Random Walks and Random Environments, (1995)
dc.relation.referencesHughes B.D., Shlesinger M.F., Lattice dynamics, random walks, and nonintegral effective dimensionality, Journal of Mathematical Physics, 23, 9, pp. 1688-1692, (1982)
dc.relation.referencesKemeny J.G., Laurie Snell J., Finite Markov Chains, (1976)
dc.relation.referencesKlages R., Search for food of birds, fish and insects, Diffusive Spreading in Nature, Technology and Society, pp. 129-162, (2016)
dc.relation.referencesMaugin G.A., Nonclassical Continuum Mechanics, (2017)
dc.relation.referencesMetzler R., Klafter J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339, 1, pp. 1-77, (2000)
dc.relation.referencesMetzler R., Klafter J., The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37, 31, pp. R161-R208, (2004)
dc.relation.referencesMetzler R., Koren T., van Den Broek B., Wuite G.J.L., Lomholt M.A., And did he search for you, and could not find you?, Journal of Physics A: Mathematical and Theoretical, 42, 43, (2009)
dc.relation.referencesMichelitsch T., Collet B.A., Riascos A.P., Nowakowski A.F., Nicolleau F., On recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices, Journal of Physics A: Mathematical and Theoretical, 50, (2017)
dc.relation.referencesMichelitsch T.M., Maugin G.A., Derogar S., Rahman M., A regularized representation of the fractional Laplacian in n dimensions and its relation to Weierstrass-Mandelbrot-type fractal functions, IMA Journal of Applied Mathematics, 79, 5, pp. 753-777, (2014)
dc.relation.referencesMichelitsch T.M., Collet B., Nowakowski A.F., Nicolleau F.C.G.A., Fractional laplacian matrix on the finite periodic linear chain and its periodic Riesz fractional derivative continuum limit, Journal of Physics A: Mathematical and Theoretical, 48, 29, (2015)
dc.relation.referencesMichelitsch T.M., Collet B., Nowakowski A.F., Nicolleau F.C.G.A., Lattice fractional laplacian and its continuum limit kernel on the finite cyclic chain, Chaos, Solitons & Fractals, 82, pp. 38-47, (2016)
dc.relation.referencesMichelitsch T.M., Collet B.A., Riascos A.P., Nowakowski A.F., Nicolleau F.C.G.A., Fractional random walk lattice dynamics, Journal of Physics A: Mathematical and Theoretical, 50, 5, (2017)
dc.relation.referencesMieghem P.V., Graph Spectra for Complex Networks, (2011)
dc.relation.referencesMontroll E.W., Random walks in multidimensional spaces, especially on periodic lattices, Journal of the Society for Industrial and Applied Mathematics, 4, 4, pp. 241-260, (1956)
dc.relation.referencesMontroll E.W., Weiss G.H., Random walks on lattices. II, Journal of Mathematical Physics, 6, 2, pp. 167-181, (1965)
dc.relation.referencesNewman M.E.J., Networks: An Introduction, (2010)
dc.relation.referencesNoh J.D., Rieger H., Random Walks on Complex Networks, Physical Review Letters, 92, 11, (2004)
dc.relation.referencesPalyulin V.V., Chechkin A.V., Metzler R., Lévy flights do not always optimize random blind search for sparse targets, Proc Nat Acad Sci USA, 111, 8, pp. 2931-2936, (2014)
dc.relation.referencesPalyulin V.V., Chechkin A.V., Klages R., Metzler R., Search reliability and search efficiency of combined Lévy-Brownian motion: Long relocations mingled with thorough local exploration, Journal of Physics A: Mathematical and Theoretical, 49, 39, (2016)
dc.relation.referencesPearson K., The problem of the random walk, Nature, 72, 294, pp. 318-342, (1905)
dc.relation.referencesPolya G., Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Mathematische Annalen, 83, pp. 149-160, (1921)
dc.relation.referencesRiascos A.P., Mateos J.L., Long-range navigation on complex networks using Lévy random walks, Phys Rev E, 86, (2012)
dc.relation.referencesRiascos A.P., Mateos J.L., Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights, Phys Rev E, 90, (2014)
dc.relation.referencesRiascos A.P., Mateos J.L., Fractional diffusion on circulant networks: Emergence of a dynamical small world, Journal of Statistical Mechanics: Theory and Experiment, 2015, 7, (2015)
dc.relation.referencesRiascos A.P., Michelitsch T.M., Collet B., Nowakowski A.F., Nicolleau F.C.G.A., Random Walks Defined in Terms Bof Functions of the Laplacian Matrix: Emergence of Long-Range Transport on Networks, (2017)
dc.relation.referencesSato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68, (1999)
dc.relation.referencesSpitzer F., Principles of Random Walks, (1976)
dc.relation.referencesViswanathan G.M., Raposo E.P., da Luz M.G.E., Lévy flights and superdiffusion in the context of biological encounters and random searches, Physics of Life Reviews, 5, 3, pp. 133-150, (2008)
dc.relation.referencesZoia A., Rosso A., Kardar M., Fractional Laplacian in bounded domains, Phys Rev E, 76, 2, (2007)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.type.driverinfo:eu-repo/semantics/bookPart
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/CAP_LIB
dc.type.spaLibro


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem