On recurrence and transience of fractional random walks in lattices
Fecha
2018Autor
Michelitsch T.
Collet B.
Riascos A.P.
Nowakowski A.
Nicolleau F.
Metadatos
Mostrar el registro completo del ítemResumen
The study of random walks on networks has become a rapidly growing research field, last but not least driven by the increasing interest in the dynamics of online networks. In the development of fast(er) random motion based search strategies a key issue are first passage quantities: How long does it take a walker starting from a site p0 to reach ‘by chance’ a site p for the first time? Further important are recurrence and transience features of a random walk: A random walker starting at p0 will he ever reach site p (ever return to p0)? How often a site is visited? Here we investigate Markovian random walks generated by fractional (Laplacian) generator matrices Lα/2 (0 < α ≤ 2) where L stands for ‘simple’ Laplacian matrices. This walk we refer to as ‘Fractional Random Walk’ (FRW). In contrast to classical Pólya type walks where only local steps to next neighbor sites are possible, the FRW allows nonlocal long-range moves where a remarkably rich dynamics and new features arise. We analyze recurrence and transience features of the FRW on infinite d-dimensional simple cubic lattices. We deduce by means of lattice Green’s function (probability generating functions) the mean residence times (MRT) of the walker at preselected sites. For the infinite 1D lattice (infinite ring) we obtain for the transient regime (0 < α < 1) closed form expressions for these characteristics. The lattice Green’s function on infinite lattices existing in the transient regime fulfills Riesz potential asymptotics being a landmark of anomalous diffusion, i.e. random motion (Lévy flights) where the step lengths are drawn from a Lévy α-stable distribution. © 2018, Springer International Publishing AG, part of Springer Nature.
Colecciones
- Artículos Scopus [165]
Descripción
UNIVERSIDAD MARIANA
- Calle 18 No. 34-104 Pasto (N)
- (057) + 7244460 - Cel 3127306850
- informacion@umariana.edu.co
- NIT: 800092198-5
- Código SNIES: 1720
- Res. 1362 del 3 de febrero de 1983
NORMATIVIDAD INSTITUCIONAL
PROGRAMAS DE ESTUDIO
Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electronico notificacionesjudiciales@umariana.edu.co
CONVOCATORIASINSCRIPCIÓN DE HOJAS DE VIDAGESTIÓN DEL TALENTO HUMANO
POLÍTICA DE PROTECCIÓN DE DATOS PERSONALESCONDICIONES DE USO U TÉRMINOS LEGALESRÉGIMEN TRIBUTARIO ESPECIAL 2021
Copyright Universidad Mariana
Tecnología implementada por