• Multi-labeler classification using kernel representations and mixture of classifiers 

      Imbajoa-Ruiz D.E.; Gustin I.D.; Bolaños-Ledezma M.; Arciniegas-Mejía A.F.; Guasmayan-Guasmayan F.A.; Bravo-Montenegro M.J.; Castro-Ospina A.E.; Peluffo-Ordóñez D.H. (Springer Verlag, 2017)
      This work introduces a multi-labeler kernel novel approach for data classification learning from multiple labelers. The learning process is done by training support-vector machine classifiers using the set of labelers (one ...