• Inicio
  • Comunidades
    • español
    • English
    • Guía de ingreso de datos
    • política de creación y funcionamiento del repositorio
    • Video tutorial de ingreso de datos

Repositorio Institucional

View Item 
  •   DSpace Home
  • Artículos científicos
  • Artículos Scopus
  • View Item
  •   DSpace Home
  • Artículos científicos
  • Artículos Scopus
  • View Item

Mining Pre-Grade Academic and Demographic Data to Predict University Dropout

Thumbnail
Date
2021
Author
Martínez-Navarro Á.
Verdú E.
Moreno-Ger P.
Metadata
Show full item record
Abstract
Digital transformation is enabling institutions to enhance their processes by using data and technology. In education, digital transformation allows improving the learning experience as well as the institution processes. Within education 4.0, artificial intelligence applied to learning analytics is playing a key role for universities, particularly in the dropout issue, especially in STEM with the highest dropout rates. This is particularly relevant in the Latin American Higher Education scope, given the low labour productivity in these countries. In these countries, universities often have more demand than supply, and achieving an adequate balance between admission rates and dropout rates is a key issue. A high dropout rate harms the prestige of the university and damages students who were admitted without being adequate candidates. Understanding why students abandon their studies help to know what a university can do to avoid it. Data mining (DM) techniques can help discover the individual features that influence the dropout. There are different studies proposing models to predict dropout, and most are based on data that are not at the admission stage. We propose an approach that uses DM techniques to predict dropout based on data at the admission stage. We discover factors influencing dropout by a decision tree and association rules. We use a dataset of students of a computer science degree from a University in South America and achieve good performance when predicting dropout. The most attributes influencing dropout are the pre-grade performance in STEM subjects and the location of the city of residence. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
URI
https://hdl.handle.net/20.500.14112/28958
Collections
  • Artículos Scopus [165]
Description


    UNIVERSIDAD MARIANA

    • Calle 18 No. 34-104 Pasto (N)
    • (057) + 7244460 - Cel 3127306850
    • informacion@umariana.edu.co
    • NIT: 800092198-5
    • Código SNIES: 1720
    • Res. 1362 del 3 de febrero de 1983

    NORMATIVIDAD INSTITUCIONAL

    • Estatuto General
    • Reglamento General
    • Reglamento Educadores profesionales
    • Reglamento de Educados
    • Reglamento de Trabajo
    • PDI 2021 - 2028

    PROGRAMAS DE ESTUDIO

    • Programas de Pregrado
    • Especializaciones
    • Maestrías
    • Doctorados
    • Educación Virtual
    • Programas Técnicos y Tecnológicos

    PROGRAMAS DE FACULTAD

    • Ingeniería
    • Ciencias de la salud
    • Humanidades y Ciencias Sociales
    • Ciencias Contables, Económicas y Adm.
    • Educación

    Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electronico notificacionesjudiciales@umariana.edu.co


    CONVOCATORIASINSCRIPCIÓN DE HOJAS DE VIDAGESTIÓN DEL TALENTO HUMANO


    POLÍTICA DE PROTECCIÓN DE DATOS PERSONALESCONDICIONES DE USO U TÉRMINOS LEGALESRÉGIMEN TRIBUTARIO ESPECIAL 2021


    Copyright Universidad Mariana

    Tecnología implementada por

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsxmlui.ArtifactBrowser.Navigation.browse_tipoTitlesSubjectsThis CollectionBy Issue DateAuthorsxmlui.ArtifactBrowser.Navigation.browse_tipoTitlesSubjects

    My Account

    LoginRegister
    Universidad Mariana
    • Calle 18 No. 34 - 104 Pasto (N)
    • (602) + 7244460 - Cel. 3127306850
    • informacion@umariana.edu.co
    • NIT: 800092198-5
    • Código SNIES: 1720
    • Res. 1362 del 3 de febrero de 1983
    Normatividad institucional
    • Estatuto General
    • Reglamento General
    • Reglamento Educadores Profesionales
    • Reglamento de Educandos
    • Reglamento de Trabajo
    • PDI 2021 - 2028
    Programas de estudio
    • Programas Profesionales
    • Especializaciones
    • Maestrías
    • Doctorados
    • Educación Virtual
    • Programas Técnicos y Tecnológicos
    Programas por facultades
    • Ingeniería
    • Ciencias de la Salud
    • Humanidades y Ciencias Sociales
    • Ciencias Contables, Económicas y Administrativas
    • Educación

    Para la recepción de notificaciones judiciales se encuentra habilitada la cuenta de correo electrónico notificacionesjudiciales@umariana.edu.co

    • Trabaje con nosotros
    • Inscripción de Hojas de Vida
    • Gestión del Talento Humano
    • Política de Protección de Datos Personales
    • Condiciones de uso y términos legales
    • Régimen Tributario Especial 2022
    Universidad Mariana

    Copyright © 2023
    Universidad Mariana

    Acuerdo 015 del 18 de mayo de 2011
    Un espacio 100% libre de humo de cigarrillo

    Tecnología implementada por