Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorCerón W.L.
dc.contributor.authorKayano M.T.
dc.contributor.authorAndreoli R.V.
dc.contributor.authorCanchala T.
dc.contributor.authorAvila-Diaz A.
dc.contributor.authorRibeiro I.O.
dc.contributor.authorRojas J.D.
dc.contributor.authorEscobar-Carbonari D.
dc.contributor.authorTapasco J.
dc.date.accessioned2024-12-02T20:16:13Z
dc.date.available2024-12-02T20:16:13Z
dc.date.issued2024
dc.identifier.issn8998418
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29044
dc.description.abstractStudies related to monitoring changes in frequency, intensity and duration of precipitation extremes are key to creating efficient climate change measures and forest conservation policies. This study describes new insights into rainfall precipitation extremes over the Amazon basin (AB) during the last four decades (1981–2021) from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPSv2). Here we analysed the trends of daily extreme precipitation indices proposed by the Expert Team on Climate Change Detection and Indices (ETCCDI) at the seasonal scale, using the trend-empirical orthogonal function (TEOF). Our results indicate that the frequency of precipitation extremes increased over Peruvian Amazonia and northeastern Brazilian Amazonia, and reduced in the centre of AB, mainly during the first seasons of the year: December–January–February (DJF) and March–April–May (MAM). The cooling trend over the eastern and central tropical Pacific and the warming trend over the tropical and western subtropical Pacific could associate with the increase in frequency of precipitation extremes in DJF. Furthermore, during June–July–August (JJA) and September–October–November (SON), rainfall intensity indices showed a decrease in Colombia and the Bolivian Amazon, in contrast, northern and southern Peru delivered an increased pattern. The trend pattern in the JJA and SON seasons could be associated with a warming trend over most of the North Atlantic and a cooling in the 40°–60° S band. Our results demonstrate that the precipitation extremes over the AB have spatially varying trends. These heterogeneous trends over the space might be take into account for robust adaptation policies over the countries that are parts of the AB, such as Bolivia, Brazil, Colombia, Ecuador, Guyana, Perú, Surinam and Venezuela. © 2024 Royal Meteorological Society.
dc.description.sponsorshipFunding text 1: The first author received \u2018Bolsista CAPES/BRASIL\u2019 grant 88887.701371/2022\u201000 for the development of a postdoctoral research fellowship in the Postgraduate Program in Climate and Environment (CLIAMB, INPA/UEA). The second author thanks the UEA for the Senior Visitor Researcher grant. The Conselho Nacional de Desenvolvimento Cient\u00EDfico e Tecnol\u00F3gico (CNPq) of Brazil partially supported third author under grant 308435/2022\u20102. The third author was partially supported by the Universidade do Estado do Amazonas (grant, ordinance 086/2021\u2014GR/UEA). The fifth author thanks the funding given by Universidad del Rosario with the project \u2018Extremos hidroclimatol\u00F3gicos en Colombia durante 1980 al 2100\u2014EXHIDROC\u2019. The sixth author received funds from Cuomo Foundation by Term 002/2021 for the development of a postdoctoral research fellowship in the (CLIAMB, INPA/UEA).
dc.description.sponsorshipFunding text 2: The authors are grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES), Universidad del Valle (Cali\u2010Colombia), Universidade do Estado do Amazonas (UEA), Instituto Nacional de Pesquisas da Amaz\u00F4nia (INPA), the International Center for Tropical Agriculture (CIAT), the Conselho Nacional de Desenvolvimento Cient\u00EDfico e Tecnol\u00F3gico (CNPq) and the Cuomo Foundation.
dc.format20
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJohn Wiley and Sons Ltd
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceInternational Journal of Climatology
dc.sourceInt. J. Climatol.
dc.sourceScopus
dc.titleNew insights into trends of rainfall extremes in the Amazon basin through trend-empirical orthogonal function (1981–2021)
datacite.contributorDepartamento de Geografía, Facultad de Humanidades, Universidad del Valle, Cali, Colombia
datacite.contributorPrograma de Pós-Gradução em Clima e Ambiente, Instituto Nacional de Pesquisa da Amazônia/Universidade do Estado do Amazonas, Manaus, Brazil
datacite.contributorCoordenação Geral de Ciências da Terra, Instituto Nacional de Pesquisas Espaciais, SP, São José dos Campos, Brazil
datacite.contributorEscola Superior de Tecnologia, Universidade do Estado do Amazonas, AM, Manaus, Brazil
datacite.contributorEnvironmental Engineering Program, Faculty of Engineering, Universidad Mariana, Pasto, Colombia
datacite.contributorEarth System Science Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
datacite.contributorGeomatics Specialization, Postgraduate Program, School of Civil Engineering and Geomatics, Universidad del Valle, Cali, Colombia
datacite.contributorClimate Action, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
datacite.contributorDepartment of Physical Geography, Stockholm University, Stockholm, Sweden
datacite.contributorCerón W.L., Departamento de Geografía, Facultad de Humanidades, Universidad del Valle, Cali, Colombia, Programa de Pós-Gradução em Clima e Ambiente, Instituto Nacional de Pesquisa da Amazônia/Universidade do Estado do Amazonas, Manaus, Brazil
datacite.contributorKayano M.T., Coordenação Geral de Ciências da Terra, Instituto Nacional de Pesquisas Espaciais, SP, São José dos Campos, Brazil, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, AM, Manaus, Brazil
datacite.contributorAndreoli R.V., Programa de Pós-Gradução em Clima e Ambiente, Instituto Nacional de Pesquisa da Amazônia/Universidade do Estado do Amazonas, Manaus, Brazil, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, AM, Manaus, Brazil
datacite.contributorCanchala T., Environmental Engineering Program, Faculty of Engineering, Universidad Mariana, Pasto, Colombia
datacite.contributorAvila-Diaz A., Earth System Science Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
datacite.contributorRibeiro I.O., Programa de Pós-Gradução em Clima e Ambiente, Instituto Nacional de Pesquisa da Amazônia/Universidade do Estado do Amazonas, Manaus, Brazil
datacite.contributorRojas J.D., Geomatics Specialization, Postgraduate Program, School of Civil Engineering and Geomatics, Universidad del Valle, Cali, Colombia
datacite.contributorEscobar-Carbonari D., Climate Action, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, Department of Physical Geography, Stockholm University, Stockholm, Sweden
datacite.contributorTapasco J., Climate Action, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonW.L. Cerón
dc.contributor.contactpersonDepartamento de Geografía, Facultad de Humanidades, Universidad del Valle, Cali, 760032, Colombia
dc.contributor.contactpersonemail: wilmar.ceron@correounivalle.edu.co
dc.contributor.sponsorUniversity of East Anglia, UEA
dc.contributor.sponsorCentro Internacional de Agricultura Tropical, CIAT
dc.contributor.sponsorInstituto Nacional de Pesquisas da Amazônia, INPA
dc.contributor.sponsorChartered Institute of Architectural Technologists, CIAT
dc.contributor.sponsorUniversidad del Rosario, UR
dc.contributor.sponsorCuomo Foundation
dc.contributor.sponsorCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES
dc.contributor.sponsorUniversidad del Valle, Univalle
dc.contributor.sponsorConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, (308435/2022‐2)
dc.contributor.sponsorConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq
dc.contributor.sponsorUniversidade do Estado do Amazonas, UEA, (086/2021—GR/UEA)
dc.contributor.sponsorUniversidade do Estado do Amazonas, UEA
dc.identifier.doi10.1002/joc.8561
dc.identifier.instnameUniversidad Mariana
dc.identifier.localIJCLE
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85199765143&doi=10.1002%2fjoc.8561&partnerID=40&md5=05f64de35f7557065c4378a40d59cc24
dc.relation.citationendpage3975
dc.relation.citationstartpage3955
dc.relation.citationvolume44
dc.relation.iscitedby0
dc.relation.referencesAghaKouchak A., Chiang F., Huning L.S., Love C.A., Mallakpour I., Mazdiyasni O., Et al., Climate extremes and compound hazards in a warming world, Annual Review of Earth and Planetary Sciences, 48, 1, pp. 519-548, (2020)
dc.relation.referencesAndreoli R.V., da Silva S.N.R., de Souza R.A.F., Kayano M.T., Garcia S.R., Capistrano V.B., Et al., Intense drought and flooding events in the Rio Negro and relation with the tropical Pacific and Atlantic variability modes, Theoretical and Applied Climatology, 129, 1-2, pp. 551-576, (2017)
dc.relation.referencesAndreoli R.V., de Oliveira S.S., Kayano M.T., Viegas J., de Souza R.A.F., Candido L.A., The influence of different El Niño types on the South American rainfall, International Journal of Climatology, 37, 3, pp. 1374-1390, (2017)
dc.relation.referencesAragao L.E.O.C., Anderson L.O., Fonseca M.G., Rosan T.M., Vedovato L.B., Wagner F.H., Et al., 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions, Nature Communications, 9, 1, pp. 1-12, (2018)
dc.relation.referencesAvila-Diaz A., Benezoli V., Justino F., Torres R., Wilson A., Assessing current and future trends of climate extremes across Brazil based on reanalyses and earth system model projections, Climate Dynamics, 55, 5, pp. 1403-1426, (2020)
dc.relation.referencesAvila-Diaz A., Justino F., Lindemann D.S., Rodrigues J.M., Ferreira G.R., Climatological aspects and changes in temperature and precipitation extremes in viçosa-Minas Gerais, Anais da Academia Brasileira de Ciencias, 92, 2, pp. 1-19, (2020)
dc.relation.referencesAvila-Diaz A., Justino F., Wilson A., Bromwich D., Amorim M., Recent precipitation trends, flash floods and landslides in southern Brazil, Environmental Research Letters, 11, 11, (2016)
dc.relation.referencesAvila-Diaz A., Torres R.R., Zuluaga C.F., Ceron W.L., Oliveira L., Benezoli V., Et al., Current and future climate extremes over Latin America and Caribbean: assessing earth system models from high resolution model Intercomparison project (HighResMIP), Earth Systems and Environment, 7, pp. 99-130, (2022)
dc.relation.referencesAyes Rivera I., Molina-Carpio J., Espinoza J.C., Gutierrez-Cori O., Ceron W.L., Frappart F., Et al., The role of the rainfall variability in the decline of the surface suspended sediment in the upper Madeira Basin (2003–2017), Frontiers in Water, 3, September, pp. 1-14, (2021)
dc.relation.referencesBaccini A., Goetz S.J., Walker W.S., Laporte N.T., Sun M., Sulla-Menashe D., Et al., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature Climate Change, 2, 3, pp. 182-185, (2012)
dc.relation.referencesBarbosa S.M., Andersen O.B., Trend patterns in global sea surface temperature, International Journal of Climatology, 29, pp. 2049-2055, (2009)
dc.relation.referencesBarichivich J., Gloor E., Peylin P., Brienen R.J.W., Schongart J., Espinoza J.C., Et al., Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation, Science Advances, 4, 9, pp. 1-7, (2018)
dc.relation.referencesBrito A.L., Veiga J.A.P., Yoshida M.C., Extreme rainfall events over the Amazon basin produce significant quantities of rain relative to the rainfall climatology, Atmospheric and Climate Sciences, 4, 2, pp. 179-191, (2014)
dc.relation.referencesCavalcante R.B.L., Ferreira D., Pontes P.R.M., Tedeschi R.G., da Costa C.P.W., de Souza E.B., Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia, Atmospheric Research, 238, January, (2020)
dc.relation.referencesCeron W.L., Andreoli R.V., Kayano M.T., Canchala T., Ocampo-marulanda C., Avila-diaz A., Et al., Trend pattern of heavy and intense rainfall events in Colombia from 1981–2018 : a trend-EOF approach, Atmosphere, 13, 2, (2022)
dc.relation.referencesCeron W.L., Kayano M.T., Andreoli R.V., Avila A., Canchala T., Frances F., Et al., Streamflow intensification driven by the Atlantic multidecadal oscillation (AMO) in the Atrato River basin, northwestern Colombia, Water, 12, 1, (2020)
dc.relation.referencesCeron W.L., Kayano M.T., Andreoli R.V., Avila-Diaz A., Ayes I., Freitas E.D., Et al., Recent intensification of extreme precipitation events in the La Plata Basin in southern South America (1981–2018), Atmospheric Research, 249, October 2020, (2021)
dc.relation.referencesChen Y., Moufouma-Okia W., Masson-Delmotte V., Zhai P., Pirani A., Recent progress and emerging topics on weather and climate extremes since the fifth assessment report of the intergovernmental panel on climate change, Annual Review of Environment and Resources, 43, pp. 35-59, (2018)
dc.relation.referencesCHIRPS data, (2022)
dc.relation.referencesCobb K.M., Charles C.D., Cheng H., Lawrence E.R., El Niño/southern oscillation and tropical Pacific climate during the last millennium, Nature, 424, July, pp. 271-2176, (2003)
dc.relation.referencesCroitoru A.-E., Piticar A., Burada D.C., Changes in precipitation extremes in Romania, Quaternary International, 415, pp. 325-335, (2016)
dc.relation.referencesDa Silva P.E., Santos e Silva C.M., Spyrides M.H.C., Andrade L., Precipitation and air temperature extremes in the Amazon and northeast Brazil, International Journal of Climatology, 39, 2, pp. 579-595, (2019)
dc.relation.referencesde Barros Soares D., Lee H., Loikith P.C., Barkhordarian A., Mechoso C.R., Can significant trends be detected in surface air temperature and precipitation over South America in recent decades?, International Journal of Climatology, 37, 3, pp. 1483-1493, (2017)
dc.relation.referencesde Carvalho L.M.V., Cavalcanti I.F.A., The South American Monsoon System (SAMS), The monsoons and climate change, pp. 121-148, (2016)
dc.relation.referencesDominguez-Castro F., Reig F., Vicente-Serrano S.M., Aguilar E., Pena-Angulo D., Noguera I., Et al., A multidecadal assessment of climate indices over Europe, Scientific Data, 7, 1, (2020)
dc.relation.referencesDonat M., Alexander L.V., Herold N., Dittus A.J., Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations, Journal of Geophysical Research: Atmospheres, 121, 19, pp. 11-174, (2016)
dc.relation.referencesdos Reis L.C., Silva C., Bezerra B.G., Mutti P.R., Spyrides M.H.C., da Silva P.E., Analysis of climate extreme indices in the MATOPIBA region, Brazil, Pure and Applied Geophysics, 177, 9, pp. 4457-4478, (2020)
dc.relation.referencesDuran-Quesada A.M., Reboita M., Gimeno L., Precipitation in tropical America and the associated sources of moisture: a short review, Hydrological Sciences Journal, 57, 4, pp. 612-624, (2012)
dc.relation.referencesEnfield D.B., Mestas-Nunez A.M., Mayer D.A., Cid-Serrano L., How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures?, Journal of Geophysical Research: Oceans, 104, C4, pp. 7841-7848, (1999)
dc.relation.referencesEnfield D.B., Mestas-Nunez A.M., Trimble P.J., The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S, Geophysical Research Letters, 28, 10, pp. 2077-2080, (2001)
dc.relation.referencesEspinoza J.C., Garreaud R., Poveda G., Arias P.A., Molina-Carpio J., Masiokas M., Et al., Hydroclimate of the Andes part I: Main climatic features, Frontiers in Earth Science, 8, March, pp. 1-20, (2020)
dc.relation.referencesEspinoza J.-C., Jimenez J.C., Marengo J.A., Schongart J., Ronchail J., Lavado-Casimiro W., Et al., The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features, Scientific Reports, 14, 1, (2024)
dc.relation.referencesEspinoza J.C., Marengo J.A., Schongart J., Jimenez J.C., The new historical flood of 2021 in the Amazon River compared to major floods of the 21st century: atmospheric features in the context of the intensification of floods, Weather and Climate Extremes, 35, (2022)
dc.relation.referencesEspinoza J.C., Ronchail J., Guyot L., Cochonneau G., Naziano F., Lavado W., Et al., Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador), International Journal of Climatology, 29, 11, pp. 1574-1594, (2009)
dc.relation.referencesEspinoza J.C., Ronchail J., Marengo J.A., Segura H., Contrasting north–south changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017), Climate Dynamics, 52, 9-10, pp. 5413-5430, (2019)
dc.relation.referencesFischer E.M., Sedlacek J., Hawkins E., Knutti R., Models agree on forced response pattern of precipitation and temperature extremes, Geophysical Research Letters, 41, 23, pp. 8554-8562, (2014)
dc.relation.referencesFunk C., Peterson P., Landsfeld M., Pedreros D., Verdin J., Rowland J., Et al., A quasi-global precipitation time series for drought monitoring data series 832, US Geological Survey Data Series, 832, 4, pp. 1-12, (2014)
dc.relation.referencesFunk C., Peterson P., Landsfeld M., Pedreros D., Verdin J., Shukla S., Et al., The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes, Scientific Data, 2, (2015)
dc.relation.referencesFunk C., Verdin A., Michaelsen J., Peterson P., Pedreros D., A global satellite assisted precipitation climatology, Earth System Dynamics Discussions, 8, 1, pp. 401-425, (2015)
dc.relation.referencesGarcia S.R., Kayano M.T., Some evidence on the relationship between the South American monsoon and the Atlantic ITCZ, Theoretical and Applied Climatology, 99, 1-2, pp. 29-38, (2010)
dc.relation.referencesGiraldo-Osorio J.D., Trujillo-Osorio D.E., Baez-Villanueva O.M., Analysis of ENSO-driven variability, and long-term changes, of extreme precipitation indices in Colombia, using the satellite rainfall estimates CHIRPS, Water (Switzerland), 14, 11, pp. 1-33, (2022)
dc.relation.referencesGloor M., Barichivich J., Ziv G., Brienen R., Schongart J., Peylin P., Recent Amazon climate as background for possible ongoing special section, Global Biogeochemical Cycles, 29, 9, pp. 1384-1399, (2015)
dc.relation.referencesGloor M., Brienen R.J.W., Galbraith D., Feldpausch T.R., Schongart J., Guyot J.L., Et al., Intensification of the Amazon hydrological cycle over the last two decades, Geophysical Research Letters, 40, 9, pp. 1729-1733, (2013)
dc.relation.referencesGrimm A.M., Dominguez F., Cavalcanti I.F.A., Cavazos T., Gan M.A., Dias P.L.S., Et al., South and North American monsoons: characteristics, life cycle, variability, modeling, and prediction, Multiscale Global Monsoon System, pp. 49-66, (2021)
dc.relation.referencesHaghtalab N., Moore N., Heerspink B.P., Hyndman D.W., Evaluating spatial patterns in precipitation trends across the Amazon basin driven by land cover and global scale forcings, Theoretical and Applied Climatology, 140, 1-2, pp. 411-427, (2020)
dc.relation.referencesHannachi A., Pattern hunting in climate: a new method for finding trends in gridded climate data, International Journal of Climatology, 27, pp. 1-15, (2007)
dc.relation.referencesHaylock M., Peterson T.C., Alves L.M., Ambrizzi T., Anunciacao M.T., Baez J., Et al., Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature, Journal of Climate, 19, 8, pp. 1490-1512, (2006)
dc.relation.referencesHeerspink B.P., Kendall A.D., Coe M.T., Hyndman D.W., Trends in streamflow, evapotranspiration, and groundwater storage across the Amazon basin linked to changing precipitation and land cover, Journal of Hydrology: Regional Studies, 32, November, (2020)
dc.relation.referencesHeidinger H., Carvalho L., Jones C., Posadas A., Quiroz R., A new assessment in total and extreme rainfall trends over central and southern Peruvian Andes during 1965–2010, International Journal of Climatology, 38, January, pp. e998-e1015, (2018)
dc.relation.referencesHuang B., Thorne P.W., Banzon V.F., Boyer T., Chepurin G., Lawrimore J.H., Et al., Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons, Journal of Climate, 30, 20, pp. 8179-8205, (2017)
dc.relation.referencesSummary for policymakers: synthesis report. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1–34, (2023)
dc.relation.referencesKarl T.R., Nicholls N., Ghazi A., CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes—workshop summary, Climatic Change, 42, 1, pp. 3-7, (1999)
dc.relation.referencesKayano M.T., Andreoli R.V., Interannual variability of the upper tropospheric circulation, Meteorology and Atmospheric Physics, 68, 3-4, pp. 143-150, (1998)
dc.relation.referencesKayano M.T., Andreoli R.V., Souza R.A.F., Pacific and Atlantic multidecadal variability relations to the El Niño events and their effects on the South American rainfall, International Journal of Climatology, 40, 4, pp. 2183-2200, (2020)
dc.relation.referencesKayano M.T., Capistrano V.B., How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall, International Journal of Climatology, 34, 1, pp. 162-178, (2014)
dc.relation.referencesKayano M.T., Rosa M.B., Rao V.B., Andreoli R.V., Souza R.A.F., Relations of the low-level extratropical cyclones in the southeast Pacific and South Atlantic to the Atlantic multidecadal oscillation, Journal of Climate, 32, 14, pp. 4167-4178, (2019)
dc.relation.referencesKendall M.G., Rank correlation methods, (1975)
dc.relation.referencesLabraga J.C., Frumento O., Lopez M., The atmospheric water vapor cycle in South America and the tropospheric circulation, Journal of Climate, 13, 11, pp. 1899-1915, (2000)
dc.relation.referencesLi C., Zwiers F., Zhang X., Li G., Sun Y., Wehner M., Changes in annual extremes of daily temperature and precipitation in CMIP6 models, Journal of Climate, 34, 9, pp. 3441-3460, (2021)
dc.relation.referencesLi G., Ren B., Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001, Theoretical and Applied Climatology, 107, 1-2, pp. 59-72, (2012)
dc.relation.referencesLi G., Ren B., Yang C., Zheng J., Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977–2006, Journal of Geophysical Research Atmospheres, 116, 10, pp. 1-9, (2011)
dc.relation.referencesLi X., Xie S.P., Gille S.T., Yoo C., Atlantic-induced pan-tropical climate change over the past three decades, Nature Climate Change, 6, 3, pp. 275-279, (2016)
dc.relation.referencesLiebmann B., Marengo J.A., Interannual variability of the rainy season and rainfall in the Brazilian Amazon basin, Journal of Climate, 14, 22, pp. 4308-4318, (2001)
dc.relation.referencesLimberger L., Silva M.E.S., Pereira G., da Silva C.F., Mataveli G.A.V., Lima B.S., Streamflow and precipitation trends in the Brazilian Amazon basin and their association with Pacific decadal oscillation and deforestation, Theoretical and Applied Climatology, 146, 1-2, pp. 511-526, (2021)
dc.relation.referencesLorenz E.N., Empirical orthogonal functions and statistical weather prediction. Technical Report. Statistical Forecast Project Report 1, Department of Meteorology, MIT, 49, (1956)
dc.relation.referencesLorenz R., Stalhandske Z., Fischer E.M., Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations, Geophysical Research Letters, 46, 14, pp. 8363-8374, (2019)
dc.relation.referencesLosada I.J., Reguero B.G., Mendez F.J., Castanedo S., Abascal A.J., Minguez R., Long-term changes in sea-level components in Latin America and the Caribbean, Global and Planetary Change, 104, pp. 34-50, (2013)
dc.relation.referencesLucas E.W.M., Sousa F., Silva F., Rocha Junior R., Pinto D.D.C., Silva V., Trends in climate extreme indices assessed in the Xingu river basin—Brazilian Amazon, Weather and Climate Extremes, 31, March 2020, (2021)
dc.relation.referencesMaeda E.E., Ma X., Wagner F.H., Kim H., Oki T., Eamus D., Et al., Evapotranspiration seasonality across the Amazon basin, Earth System Dynamics, 8, 2, pp. 439-454, (2017)
dc.relation.referencesMalhi Y., Roberts J.T., Betts R.A., Killeen T.J., Li W., Nobre C.A., Climate change, deforestation, and the fate of the Amazon, Science, 319, 5860, pp. 169-172, (2008)
dc.relation.referencesMann H.B., Nonparametric tests against trend, Econometrica, 13, 3, pp. 245-259, (1945)
dc.relation.referencesMarengo J.A., Characteristics and spatio-temporal variability of the Amazon river basin water budget, Climate Dynamics, 24, 1, pp. 11-22, (2005)
dc.relation.referencesMarengo J.A., Espinoza J.C., Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts, International Journal of Climatology, 36, pp. 1033-1050, (2016)
dc.relation.referencesMarengo J.A., Nobre C.A., Tomasella J., Oyama M.D., Oliveira G.S., Oliveira R., Et al., The drought of Amazonia in 2005, Journal of Climate, 21, 3, pp. 495-516, (2008)
dc.relation.referencesMarengo J.A., Tomasella J., Alves L.M., Soares W.R., Rodriguez D.A., The drought of 2010 in the context of historical droughts in the Amazon region, Geophysical Research Letters, 38, 12, pp. 1-5, (2011)
dc.relation.referencesMesa O., Urrea V., Ochoa A., Trends of hydroclimatic intensity in Colombia, Climate, 9, 7, (2021)
dc.relation.referencesMin S.K., Zhang X., Zwiers F.W., Hegerl G.C., Human contribution to more-intense precipitation extremes, Nature, 470, 7334, pp. 378-381, (2011)
dc.relation.referencesMolina-Carpio J., Espinoza J.C., Vauchel P., Ronchail J., Gutierrez Caloir B., Guyot J.L., Et al., Hydroclimatology of the upper Madeira River basin: spatio-temporal variability and trends, Hydrological Sciences Journal, 62, 6, pp. 911-927, (2017)
dc.relation.referencesMolina-Carpio J., Rivera I.A., Espinoza-Romero D., Ceron W.L., Espinoza J.C., Ronchail J., Regionalization of rainfall in the upper Madeira basin based on interannual and decadal variability: a multi-seasonal approach, International Journal of Climatology, 43, 14, pp. 6402-6419, (2023)
dc.relation.referencesMu Y., Jones C., An observational analysis of precipitation and deforestation age in the Brazilian legal Amazon, Atmospheric Research, 271, March, (2022)
dc.relation.referencesMullerr M., Kaspar M., Event-adjusted evaluation of weather and climate extremes, Natural Hazards and Earth System Science, 14, 1, pp. 473-483, (2014)
dc.relation.referencesSST data, (2021)
dc.relation.referencesOlaoluwa E.E., Current to future changes on a local to global scale., pp. 1-17, (2022)
dc.relation.referencesPaca V., Espinoza-Davalos G.E., Moreira D.M., Comair G., Variability of trends in precipitation across the Amazon river basin determined from the CHIRPS precipitation product and from station records, Water (Switzerland), 12, 5, pp. 1-22, (2020)
dc.relation.referencesPeterson T.C., Folland C.C., Gruza G., Hogg W., Mokssit A., Plummer N., Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001. Report WCDMP-47, WMO-TD 1071, (March): 143, (2001)
dc.relation.referencesPoveda G., Jaramillo L., Vallejo L.F., Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers, Water Resources Research, 50, 1, pp. 98-118, (2014)
dc.relation.referencesPrussmann J., Suarez C., Chaves M., Atlas of conservation opportunities in the Amazon biome under climate change considerations. Redparques, WWF, FAO, UICN, PNUMA: Cali (Colombia), (2017)
dc.relation.referencesReboita M.S., Gan M.A., Porfirio R., Rocha D.A., Ambrizzi T., Regimes de precipitação na América do Sul: uma revisão bibliográfica, Revista Brasileira de Meteorologia, 25, 2, pp. 185-204, (2010)
dc.relation.referencesReboita M.S., Krusche N., Ambrizzi T., Porfirio R., Entendendo o Tempo e o Clima na América do Sul, Terræ didatica, 8, 1, pp. 34-50, (2012)
dc.relation.referencesProyecto MapBiomas Amazonía- Colección [2020] de la Serie Anual de Mapas de Cobertura y Uso del Suelo de la Amazonía. Proyecto MapBiomas Amazonía-Colección [2020] de la Serie Anual de Mapas de Cobertura y Uso del Suelo de la Amazonía, (2020)
dc.relation.referencesSantos E.B., Lucio P.S., Santos e Silva C.M., Precipitation regionalization of the Brazilian Amazon, Atmospheric Science Letters, 16, 3, pp. 185-192, (2015)
dc.relation.referencesSapucci C.R., Mayta V.C., da Silva Dias P.L., Evaluation of diverse-based precipitation data over the Amazon region, Theoretical and Applied Climatology, 149, 3-4, pp. 1167-1193, (2022)
dc.relation.referencesSen P.K., Estimates of the regression coefficient based on Kendall's tau, Journal of the Americal Statistical Association, 63, 324, pp. 1379-1389, (1968)
dc.relation.referencesSena J.A., de Deus L.A.B., Freitas M.A.V., Costa L., Extreme events of droughts and floods in Amazonia: 2005 and 2009, Water Resources Management, 26, 6, pp. 1665-1676, (2012)
dc.relation.referencesSeneviratne S.I., Zhang X., Adnan M., Badi W., Dereczynski C., Di Luca A., Et al., Chapter 11: weather and climate extreme events in a changing climate, Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, (2021)
dc.relation.referencesSkansi M., Brunet M., Sigro J., Aguilar E., Arevalo Groening J.A., Bentancur O.J., Et al., Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America, Global and Planetary Change, 100, pp. 295-307, (2013)
dc.relation.referencesStocker T.F., Qin D., Plattner G.K., Tignor M.M.B., Allen S.K., Boschung J., Et al., Climate change 2013 the physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, pp. 1-1535, (2013)
dc.relation.referencesSun Q., Zhang X., Zwiers F., Westra S., Alexander L.V., A global, continental, and regional analysis of changes in extreme precipitation, Journal of Climate, 34, 1, pp. 243-258, (2021)
dc.relation.referencesTeodoro T.A., Reboita M.S., Llopart M., da Rocha R.P., Ashfaq M., Climate change impacts on the South American Monsoon System and its surface–atmosphere processes through RegCM4 CORDEX-CORE projections, Earth Systems and Environment, 5, 4, pp. 825-847, (2021)
dc.relation.referencesTimmermann A., Okumura Y., An S.I., Clement A., Dong B., Guilyardi E., Et al., The influence of a weakening of the Atlantic meridional overturning circulation on ENSO, Journal of Climate, 20, 19, pp. 4899-4919, (2007)
dc.relation.referencesImpacts, risks, and adaptation in the United States, Fourth national climate assessment, 2, (2018)
dc.relation.referencesUrrea V., Ochoa A., Mesa O., Seasonality of rainfall in Colombia, Water Resources Research, 55, 5, pp. 4149-4162, (2019)
dc.relation.referencesVera C., Higgins W., Amador J., Ambrizzi T., Garreaud R., Gochis D., Et al., Toward a unified view of the American monsoon systems, Journal of Climate, 19, 20, pp. 4977-5000, (2006)
dc.relation.referencesWang X., Wang D., Zhou W., Decadal variability of twentieth-century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models, Geophysical Research Letters, 36, 11, pp. 1-6, (2009)
dc.relation.referencesWard P.J., Blauhut V., Bloemendaal N., Daniell E.J., De Ruiter C.M., Duncan J.M., Et al., Review article: natural hazard risk assessments at the global scale, Natural Hazards and Earth System Sciences, 20, 4, pp. 1069-1096, (2020)
dc.relation.referencesWeng S.P., Changes of diurnal temperature range in Taiwan and their large-scale associations: univariate and multivariate trend analyses, Journal of the Meteorological Society of Japan, 88, 2, pp. 203-226, (2010)
dc.relation.referencesWongchuig Correa S., de Paiva R.C.D., Espinoza J.C., Collischonn W., Multi-decadal hydrological retrospective: case study of Amazon floods and droughts, Journal of Hydrology, 549, pp. 667-684, (2017)
dc.relation.referencesThe global risks report 2021, (2021)
dc.relation.referencesZhang X., Alexander L., Hegerl G.C., Jones P., Tank A.K., Peterson T.C., Et al., Indices for monitoring changes in extremes based on daily temperature and precipitation data, Wiley Interdisciplinary Reviews: Climate Change, 2, 6, pp. 851-870, (2011)
dc.relation.referencesZhong R., Wang P., Mao G., Chen A., Liu J., Spatiotemporal variation of enhanced vegetation index in the Amazon basin and its response to climate change, Physics and Chemistry of the Earth, 123, 1088, (2021)
dc.relation.referencesZwiers F.W., Alexander L.V., Hegerl G.C., Knutson T.R., Kossin J.P., Naveau P., Et al., Climate extremes: challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events, Modeling and prediction priorities, pp. 339-389, (2013)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsAmazon
dc.subject.keywordsAtlantic
dc.subject.keywordsclimate change
dc.subject.keywordsEl Niño-Southern Oscillation
dc.subject.keywordsheavy precipitation
dc.subject.keywordsteleconnection
dc.subject.keywordstrend-EOF
dc.subject.keywordsAmazon Basin
dc.subject.keywordsAtmospheric pressure
dc.subject.keywordsConservation
dc.subject.keywordsForestry
dc.subject.keywordsOrthogonal functions
dc.subject.keywordsRain
dc.subject.keywordsTropics
dc.subject.keywordsAmazon
dc.subject.keywordsAmazon basin
dc.subject.keywordsAtlantic
dc.subject.keywordsColombia
dc.subject.keywordsEl Nino southern oscillation
dc.subject.keywordsEmpirical Orthogonal Function
dc.subject.keywordsHeavy precipitation
dc.subject.keywordsPrecipitation extremes
dc.subject.keywordsTeleconnections
dc.subject.keywordsTrend-EOF
dc.subject.keywordsclimate change
dc.subject.keywordsEl Nino-Southern Oscillation
dc.subject.keywordsempirical orthogonal function analysis
dc.subject.keywordsextreme event
dc.subject.keywordsprecipitation intensity
dc.subject.keywordsteleconnection
dc.subject.keywordstrend analysis
dc.subject.keywordsClimate change
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue11


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem