Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorUmaquinga-Criollo A.C.
dc.contributor.authorTamayo-Quintero J.D.
dc.contributor.authorMoreno-García M.N.
dc.contributor.authorRiascos J.A.
dc.contributor.authorPeluffo-Ordóñez D.H.
dc.contributor.editorde la Cal E.A.
dc.contributor.editorVillar Flecha J.R.
dc.contributor.editorQuintián H.
dc.contributor.editorCorchado E.
dc.contributor.other15th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2020
dc.date.accessioned2024-12-02T20:16:10Z
dc.date.available2024-12-02T20:16:10Z
dc.date.issued2020
dc.identifier.isbn978-303061704-2
dc.identifier.issn3029743
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29035
dc.description.abstractThe use of machine learning into economics scenarios results appealing since it allows for automatically testing economic models and predict consumer/client behavior to support decision-making processes. The finance market typically uses a set of expert labelers or Bureau credit scores given by governmental or private agencies such as Experian, Equifax, and Creditinfo, among others. This work focuses on introducing a so-named Bag of Expert (BoE): a novel approach for creating multi-expert Learning (MEL) frameworks aimed to emulate real experts labeling (human-given labels) using neural networks. The MEL systems “learn” to perform decision-making tasks by considering a uniform number of labels per sample or individuals along with respective descriptive variables. The BoE is created similarly to Generative Adversarial Network (GANs), but rather than using noise or perturbation by a generator, we trained a feed-forward neural network to randomize sampling data, and either add or decrease hidden neurons. Additionally, this paper aims to investigate the performance on economics-related datasets of several state-of-the-art MEL methods, such as GPC, GPC-PLAT, KAAR, MA-LFC, MA-DGRL, and MA-MAE. To do so, we develop an experimental framework composed of four tests: the first one using novice experts, the second with proficient experts, the third is a mix of novices, intermediate and proficient experts, and the last one uses crowd-sourcing. Our BoE method presents promising results and can be suitable as an alternative to properly assess the reliability of both MEL methods and conventional labeler generators (i.e., virtual expert labelers). © 2020, Springer Nature Switzerland AG.
dc.format12
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceLect. Notes Comput. Sci.
dc.sourceScopus
dc.titleMulti-expert Methods Evaluation on Financial and Economic Data: Introducing Bag of Experts
datacite.contributorUniversidad de Salamanca, Salamanca, Spain
datacite.contributorUniversidad Técnica del Norte, Ibarra, Ecuador
datacite.contributorUniversidad Nacional de Colombia, Manizales, Colombia
datacite.contributorUniversidad Yachay Tech, Urcuquí, Ecuador
datacite.contributorCorporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributorUniversidad Mariana, Pasto, Colombia
datacite.contributorSDAS Research Group, Ibarra, Ecuador
datacite.contributorUmaquinga-Criollo A.C., Universidad de Salamanca, Salamanca, Spain, Universidad Técnica del Norte, Ibarra, Ecuador
datacite.contributorTamayo-Quintero J.D., Universidad Nacional de Colombia, Manizales, Colombia
datacite.contributorMoreno-García M.N., Universidad de Salamanca, Salamanca, Spain
datacite.contributorRiascos J.A., Corporación Universitaria Autónoma de Nariño, Pasto, Colombia, Universidad Mariana, Pasto, Colombia, SDAS Research Group, Ibarra, Ecuador
datacite.contributorPeluffo-Ordóñez D.H., Universidad Yachay Tech, Urcuquí, Ecuador, Corporación Universitaria Autónoma de Nariño, Pasto, Colombia, SDAS Research Group, Ibarra, Ecuador
datacite.contributor15th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2020
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonA.C. Umaquinga-Criollo
dc.contributor.contactpersonUniversidad de Salamanca, Salamanca, Spain
dc.contributor.contactpersonemail: acumaquinga@usal.es
dc.identifier.doi10.1007/978-3-030-61705-9_36
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097049192&doi=10.1007%2f978-3-030-61705-9_36&partnerID=40&md5=2711bc601856408658c93d8dec7ea5d4
dc.relation.citationendpage449
dc.relation.citationstartpage437
dc.relation.citationvolume12344 LNAI
dc.relation.conferencedate11 November 2020 through 13 November 2020
dc.relation.conferenceplaceGijón
dc.relation.iscitedby0
dc.relation.referencesAttigeri G., Manohara Pai M., Pai R., Framework to predict NPA/willful defaults in corporate loans: A big data approach, Int. J. Electr. Comput. Eng., 9, 5, pp. 3786-3797, (2019)
dc.relation.referencesBebis G., Georgiopoulos M., Feed-forward neural networks, IEEE Potentials, 13, 4, pp. 27-31, (1994)
dc.relation.referencesBlitzer J., Crammer K., Kulesza A., Pereira F., Wortman J., Learning Bounds for Domain Adaptation, (2009)
dc.relation.referencesCrammer K., Kearns M., Wortman J., Learning from multiple sources, J. Mach. Learn. Res., 9, pp. 1757-1774, (2008)
dc.relation.referencesDanenas P., Garsva G., Simutis R., Development of Discriminant Analysis and Majority-Voting Based Credit Risk Assessment Classifier, 1, pp. 204-209, (2011)
dc.relation.referencesDekel O., Shamir O., Good Learners for Evil Teachers, (2009)
dc.relation.referencesDonmez P., Carbonell J.G., Schneider J., Efficiently Learning the Accuracy of Labeling Sources for Selective Sampling, Association for Computing Machinery, New York, (2009)
dc.relation.referencesDua D., Graff C., UCI Machine Learning Repository
dc.relation.referencesGil-Gonzalez J., Alvarez-Meza A., Orozco-Gutierrez A., Learning from multiple annotators using kernel alignment, Pattern Recogn. Lett., 116, pp. 150-156, (2018)
dc.relation.referencesGroot P., Birlutiu A., Heskes T., Learning from multiple annotators with Gaussian processes, ICANN 2011. LNCS, 6792, pp. 159-164, (2011)
dc.relation.referencesKim M.J., Min S.H., Han I., An evolutionary approach to the combination of multiple classifiers to predict a stock price index, Expert Syst. Appl., 31, 2, pp. 241-247, (2006)
dc.relation.referencesKlepac G., Customer profiling in complex analytical environments using swarm intelligence algorithms, Int. J. Swarm Intell. Res. (IJSIR), 7, 3, pp. 43-70, (2016)
dc.relation.referencesLee T., Cho J., Kwon D., Sohn S., Global stock market investment strategies based on financial network indicators using machine learning techniques, Expert Syst. Appl., 117, pp. 228-242, (2019)
dc.relation.referencesLong C., Hua G., Kapoor A., A joint gaussian process model for active visual recognition with expertise estimation in crowdsourcing, Int. J. Comput. Vis., 116, 2, pp. 136-160, (2016)
dc.relation.referencesMahapatra D., Combining multiple expert annotations using semi-supervised learning and graph cuts for medical image segmentation, Comput. Vis. Image Underst., 151, pp. 114-123, (2016)
dc.relation.referencesMurillo Rendon S., Metodología Para El Aprendizaje De máquina a Partir De múltiples Expertos En Procesos De clasificación De bioseñales
dc.relation.referencesNir G., Et al., Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts, Med. Image Anal., 50, pp. 167-180, (2018)
dc.relation.referencesPatwardhan S., Yadav D., Parlikar S., A review of role of data mining techniques in portfolio management, J. Adv. Res. Dyn. Control Syst., 11, 2, pp. 674-681, (2019)
dc.relation.referencesPeluffo-Ordonez D., Murillo-Rendon S., Arias-Londono J., Castellanos-Dominguez G., A Multi-Class Extension for Multi-Labeler Support Vector Machines, pp. 701-706, (2014)
dc.relation.referencesRaykar V., Et al., Supervised Learning from Multiple Experts: Whom to Trust When Everyone Lies a Bit, 382, (2009)
dc.relation.referencesRaykar V., Et al., Learning from Crowds. J. Mach. Learn. Res., 11, pp. 1297-1322, (2010)
dc.relation.referencesRodrigues F., Pereira F., Ribeiro B., Learning from multiple annotators: Distinguishing good from random labelers, Pattern Recogn. Lett., 34, 12, pp. 1428-1436, (2013)
dc.relation.referencesRodrigues F., Pereira F., Ribeiro B., Gaussian process classification and active learning with multiple annotators, Xing, E.P., Jebara, T. (Eds.) Proceedings of the 31St International Conference on Machine Learning. Proceedings of Machine Learning Research PMLR, Bejing, China, 22–24 June 2014, Vol. 32, Pp. 433–441, (2014)
dc.relation.referencesValizadegan H., Nguyen Q., Hauskrecht M., Learning classification models from multiple experts, J. Biomed. Inform., 46, 6, pp. 1125-1135, (2013)
dc.relation.referencesWang W., Zhou Z., Learnability of multi-instance multi-label learning, Chin. Sci. Bull., 57, 19, pp. 2488-2491, (2012)
dc.relation.referencesWiebe J., Mihalcea R., Word Sense and Subjectivity, 1, pp. 1065-1072, (2006)
dc.relation.referencesYan Y., Rosales R., Fung G., Subramanian R., Dy J., Learning from multiple annotators with varying expertise, Mach. Learn., 95, 3, pp. 291-327, (2013)
dc.relation.referencesYun H., Lee M., Kang Y., Seok J., Portfolio management via two-stage deep learning with a joint cost, Expert Syst. Appl., 143, (2020)
dc.relation.referencesZhang J., Wu X., Sheng V.S., Imbalanced multiple noisy labeling, IEEE Trans. Knowl. Data Eng., 27, 2, pp. 489-503, (2015)
dc.relation.referencesZhang Q., Yang L.T., Chen Z., Li P., Bu F., An adaptive dropout deep computation model for industrial IoT big data learning with crowdsourcing to cloud computing, IEEE Trans. Ind. Inform., 15, 4, pp. 2330-2337, (2019)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsBag of experts
dc.subject.keywordsCrowd-sourcing
dc.subject.keywordsFeed-forward neural network
dc.subject.keywordsFinance
dc.subject.keywordsInvestment banking
dc.subject.keywordsMulti-expert
dc.subject.keywordsConsumer behavior
dc.subject.keywordsDecision making
dc.subject.keywordsEconomics
dc.subject.keywordsIntelligent systems
dc.subject.keywordsAdversarial networks
dc.subject.keywordsCredit scores
dc.subject.keywordsDecision making process
dc.subject.keywordsEconomic models
dc.subject.keywordsHidden neurons
dc.subject.keywordsPrivate agencies
dc.subject.keywordsSampling data
dc.subject.keywordsState of the art
dc.subject.keywordsFeedforward neural networks
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem