Mostrar el registro sencillo del ítem
Predicting High School Students' Academic Performance: A Comparative Study of Supervised Machine Learning Techniques
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Sanchez-Pozo N.N. | |
dc.contributor.author | Mejia-Ordonez J.S. | |
dc.contributor.author | Chamorro D.C. | |
dc.contributor.author | Mayorca-Torres D. | |
dc.contributor.author | Peluffo-Ordonez D.H. | |
dc.contributor.other | 1st Machine Learning-Driven Digital Technologies for Educational Innovation Workshop 2021 | |
dc.date.accessioned | 2024-12-02T20:16:10Z | |
dc.date.available | 2024-12-02T20:16:10Z | |
dc.date.issued | 2021 | |
dc.identifier.isbn | 978-166542763-0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/29033 | |
dc.description.abstract | The proliferation of mobile devices and the rapid development of information and communication technologies have revolutionized education. Educational data has evolved to be voluminously massive, broadly various, and produced at high velocity. Therefore, computerized techniques for integrating, processing, and transforming data into valuable knowledge have become necessary to improve internal academic processes. Specifically, educational data mining is an emerging discipline concerned with analyzing the massive amounts of academic data generated and stored by educational institutions. In this sense, machine learning algorithms aid decision-makers who are establishing strategies to improve students' learning experience and institutional effectiveness by revealing hidden patterns in academic performance. Thus, this paper describes our comparative study of machine learning techniques to predict academic performance. We selected the features that best fit the discovery of patterns in the academic performance of high school students, resulting in a balance between accuracy and interpretability. We implemented six supervised learning algorithms for pattern recognition: Light Gradient Boosting Machine, Gradient Boosting, AdaBoost, Logistic Regression, Random Forest, and K-nearest Neighbors. The experimental results showed that the Gradient Boosting (Gbc) algorithm achieved the highest accuracy (96.77%), superior to other classification techniques considered. © 2021 IEEE. | |
dc.description.sponsorship | ACKNOWLEDGMENTS This work is supported by the SDAS Research Group (https://sdas-group.com/). | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Future of Educational Innovation Workshop Series - Machine Learning-Driven Digital Technologies for Educational Innovation Workshop 2021 | |
dc.source | Future Educ. Innov. Workshop Ser. - Mach. Learn.-Driven Digit. Technol. Educ. Innov. Workshop | |
dc.source | Scopus | |
dc.title | Predicting High School Students' Academic Performance: A Comparative Study of Supervised Machine Learning Techniques | |
datacite.contributor | SDAS Research Group, Machine learning Research Program, Ben Guerir, Morocco | |
datacite.contributor | Universidad Técnica de Machala, Carrera de Ingeniería Química, Faculted de Ciencias Químicas y de la Salud, Machala, Ecuador | |
datacite.contributor | Universidad Mariana, Programa de Mecatrónica, Facultad de Ingeniería, Pasto, Colombia | |
datacite.contributor | Mohamed VI Polytechnique University, Modeling Simulation and Data Analysis (MSDA) Research Program, Ben Guerir, Morocco | |
datacite.contributor | Sanchez-Pozo N.N., SDAS Research Group, Machine learning Research Program, Ben Guerir, Morocco | |
datacite.contributor | Mejia-Ordonez J.S., SDAS Research Group, Machine learning Research Program, Ben Guerir, Morocco | |
datacite.contributor | Chamorro D.C., Universidad Técnica de Machala, Carrera de Ingeniería Química, Faculted de Ciencias Químicas y de la Salud, Machala, Ecuador | |
datacite.contributor | Mayorca-Torres D., Universidad Mariana, Programa de Mecatrónica, Facultad de Ingeniería, Pasto, Colombia | |
datacite.contributor | Peluffo-Ordonez D.H., Mohamed VI Polytechnique University, Modeling Simulation and Data Analysis (MSDA) Research Program, Ben Guerir, Morocco | |
datacite.contributor | 1st Machine Learning-Driven Digital Technologies for Educational Innovation Workshop 2021 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.sponsor | Shandong Academy of Sciences, SDAS | |
dc.identifier.doi | 10.1109/IEEECONF53024.2021.9733756 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128399696&doi=10.1109%2fIEEECONF53024.2021.9733756&partnerID=40&md5=30c8f6634860bf00bf9cd0566441bdac | |
dc.relation.conferencedate | 15 December 2021 through 16 December 2021 | |
dc.relation.conferenceplace | Monterrey | |
dc.relation.iscitedby | 9 | |
dc.relation.references | Mengash H.A., Using data mining techniques to predict student performance to support decision making in university admission systems, Ieee Access, 8, pp. 55462-55470, (2020) | |
dc.relation.references | Salloum S.A., Alshurideh M., Elnagar A., Shaalan K., Mining in Educational Data: Review and Future Directions, Aicv, pp. 92-102, (2020) | |
dc.relation.references | Fan Y., Liu Y., Chen H., Ma J., Data Mining-Based Design and Implementation of College Physical Education Performance Management and Analysis System, Int. J. Emerg. Technol. Learn, 14, 6, (2019) | |
dc.relation.references | Hellas A., Et al., Predicting academic performance: A systematic literature review, Proceedings Companion of the 23rd Annual Acm Conference on Innovation and Technology in Computer Science Education, pp. 175-199, (2018) | |
dc.relation.references | Contreras L.E., Fuentes H.J., Rodriguez J.I., Predicción Del Rendimiento Académico Como Indicador de Exito/fracaso de Los Estudiantes de Ingeniería Mediante Aprendizaje Automático | |
dc.relation.references | Hung H.-C., Liu I.-F., Liang C.-T., Su Y.-S., Applying Educational Data Mining to Explore Students' Learning Patterns in the Flipped Learning Approach for Coding Education, Symmetry (Basel, 12, 2, (2020) | |
dc.relation.references | Martins L.C.B., Carvalho R.N., Carvalho R.S., Victorino M.C., Holanda M., Early prediction of college attrition using data mining, 2017 16th Ieee International Conference on Machine Learning and Applications (ICMLA, pp. 1075-1078, (2017) | |
dc.relation.references | Mduma N., MacHuve D., Machine Learning Model for Predicting Student Dropout: A Case of Tanzania, Kenya and Uganda, 2021 Ieee Africon, pp. 1-6, (2021) | |
dc.relation.references | Villegas-Ch W., Roman-Canizares M., Palacios-Pacheco X., Improvement of an online education model with the integration of machine learning and data analysis in an LMS, Appl. Sci, 10, 15, (2020) | |
dc.relation.references | Akour I., Alshurideh M., Al Kurdi B., Al Ali A., Salloum S., Using machine learning algorithms to predict people's intention to use mobile learning platforms during the COVID-19 pandemic: Machine learning approach, Jmir Med. Educ, 7, 1, (2021) | |
dc.relation.references | Tawde P.D., Student personality prediction using Machine learning algorithms, Levant, 20, (2021) | |
dc.relation.references | Findiana R., Yuniarno And Endroyono E.M., Classification of Graduates Student on Entrance Selection Public Higher Education through Report Card Grade Path Using Support Vector Machine Method, 2020 3rd Int. Conf. Inf. Commun. Technol. Icoiact 2020, pp. 7-11, (2020) | |
dc.relation.references | Chamorro-Sangoquiza D.C., Vargas-Munoz A.M., Umaquinga-Criollo A.C., Becerra M.A., Peluffo-Ordonez D.H., Estudio comparativo de técnicas de minería de datos para develar patrones de desempeño académico en enseñanza media, Rev. Ibérica Sist. e Tecnol. Informação, pp. 455-468, (2020) | |
dc.relation.references | Alyahyan E., Dustegor D., Predicting academic success in higher education: Literature review and best practices, Int. J. Educ. Technol. High. Educ, 17, 1, pp. 1-21, (2020) | |
dc.relation.references | Iatrellis O., Savvas I.K., Kameas A., Fitsilis P., Integrated learning pathways in higher education: A framework enhanced with machine learning and semantics, Educ. Inf. Technol, 25, 4, pp. 3109-3129, (2020) | |
dc.relation.references | Alzamzami F., Hoda M., El Saddik A., Light Gradient Boosting Machine for General Sentiment Classification on Short Texts: A Comparative Evaluation, Ieee Access, 8, pp. 101840-101858, (2020) | |
dc.relation.references | Rehman Javed A., Jalil Z., Atif Moqurrab S., Abbas S., Liu X., Ensemble AdaBoost classifier for accurate and fast detection of botnet attacks in connected vehicles, Trans. Emerg. Telecommun. Technol, (2020) | |
dc.relation.references | Zhang L., Et al., Identification of seed maize fields with high spatial resolution and multiple spectral remote sensing using random forest classifier, Remote Sens, 12, 3, (2020) | |
dc.relation.references | Asanza V., Sanchez-Pozo N.N., Lorente-Leyva L.L., Peluffo-Ordonez D.H., Loayza F.R., Pelaez E., Classification of Subjects with Parkinson's Disease using Finger Tapping Dataset, IFAC-PapersOnLine, 54, 15, pp. 376-381, (2021) | |
dc.relation.references | Ali M., PyCaret: An Open-source, Low-code Machine Learning Library in Python, (2020) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Academic performance | |
dc.subject.keywords | Classification | |
dc.subject.keywords | Educational data mining | |
dc.subject.keywords | Educational innovation | |
dc.subject.keywords | High school education | |
dc.subject.keywords | Supervised learning | |
dc.subject.keywords | Data mining | |
dc.subject.keywords | Decision trees | |
dc.subject.keywords | Metadata | |
dc.subject.keywords | Nearest neighbor search | |
dc.subject.keywords | Random forests | |
dc.subject.keywords | Students | |
dc.subject.keywords | Supervised learning | |
dc.subject.keywords | Academic performance | |
dc.subject.keywords | Comparatives studies | |
dc.subject.keywords | Educational data mining | |
dc.subject.keywords | Educational innovations | |
dc.subject.keywords | Gradient boosting | |
dc.subject.keywords | High school education | |
dc.subject.keywords | High school students | |
dc.subject.keywords | Higher School | |
dc.subject.keywords | Machine learning techniques | |
dc.subject.keywords | School education | |
dc.subject.keywords | Adaptive boosting | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]