Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorVillota-Paz J.M.
dc.contributor.authorOsorio-Tejada J.L.
dc.contributor.authorMorales-Pinzón T.
dc.date.accessioned2024-12-02T20:16:09Z
dc.date.available2024-12-02T20:16:09Z
dc.date.issued2023
dc.identifier.issn9441344
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29030
dc.description.abstractThe increasing consumption of cleaning products deteriorates water resources due to harmful components such as phosphorus (P) and nitrogen (N) compounds, oils, bleach, and acids, typical compounds in traditional detergents. The use of biodegradable detergents as an environmentally friendly alternative has been proposed in different regions. In Colombia, resolution 1770/2018 sets a minimum biodegradability rate of 60% for the surfactants present in liquid detergents, which would reduce to a similar extent the impacts on water after their use. However, the environmental impacts of the supply chain of these detergents and their raw materials have not been evaluated so far. This study presents an environmental life cycle assessment of petroleum-based liquid detergents and a comparison to traditional solid detergents, based on the ISO 14040 standard and the ReCiPe-2016 impacts assessment method. A novel bio-detergent containing anionic plant-based surfactants was proposed in this analysis. The impacts of packaging and the distribution of the product to consumers were also considered. Raw materials contributed to 91% of the total of 314 g of CO2 eq generated per liter of liquid detergent, where the production of fatty alcohol sulfate and PET packaging shared 78.8% and 12.2% of the total impact, respectively. It was also determined that 5.4 L of water are consumed and 0.09 g of P eq and 0.1 g of N eq are emitted per liter of detergent. This liquid detergent presented better environmental performance than traditional detergents in all the impact categories, except for the fossil resource scarcity category. The evaluated detergent would significantly mitigate the generation of negative effects on ecosystems. Moreover, the substitution of PET for HDPE packaging could reduce the impacts on freshwater eutrophication by 10%, although the carbon footprint can slightly increase, which could be compensated due to its higher recyclability rate. In contrast, the proposed bio-detergent would not have significant benefits and would negatively affect water consumption and land use in its supply chain. © 2022, The Author(s).
dc.format11
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceEnvironmental Science and Pollution Research
dc.sourceEnviron. Sci. Pollut. Res.
dc.sourceScopus
dc.titleComparative life cycle assessment for the manufacture of bio-detergents
datacite.contributorFaculty of Environmental Sciences, Universidad Tecnológica de Pereira, Alamos, Pereira, Colombia
datacite.contributorFaculty of Engineering, Universidad Mariana, Pasto, Colombia
datacite.contributorSchool of Engineering, University of Warwick, Coventry, United Kingdom
datacite.contributorVillota-Paz J.M., Faculty of Environmental Sciences, Universidad Tecnológica de Pereira, Alamos, Pereira, Colombia, Faculty of Engineering, Universidad Mariana, Pasto, Colombia
datacite.contributorOsorio-Tejada J.L., Faculty of Environmental Sciences, Universidad Tecnológica de Pereira, Alamos, Pereira, Colombia, School of Engineering, University of Warwick, Coventry, United Kingdom
datacite.contributorMorales-Pinzón T., Faculty of Environmental Sciences, Universidad Tecnológica de Pereira, Alamos, Pereira, Colombia
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonJ.L. Osorio-Tejada
dc.contributor.contactpersonFaculty of Environmental Sciences, Universidad Tecnológica de Pereira, Pereira, Alamos, Colombia
dc.contributor.contactpersonemail: jose.osorio-tejada@warwick.ac.uk
dc.identifier.doi10.1007/s11356-022-24439-x
dc.identifier.instnameUniversidad Mariana
dc.identifier.localESPLE
dc.identifier.pissn36508092
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85143814354&doi=10.1007%2fs11356-022-24439-x&partnerID=40&md5=1ccc10a85043a2473c226b39604caeab
dc.relation.citationendpage34254
dc.relation.citationstartpage34243
dc.relation.citationvolume30
dc.relation.iscitedby4
dc.relation.referencesArthur T., Harjani J.R., Phan L., Jessop P.G., Hodson P.V., Effects-driven chemical design: the acute toxicity of CO 2-triggered switchable surfactants to rainbow trout can be predicted from octanol-water partition coefficients, GreenChem, 14, (2012)
dc.relation.referencesBalboa C., Hermida C., Dominguez M., Circular economy as an ecodesign framework: the ECO III model, Informador Técnico, 78, 1, (2014)
dc.relation.referencesBianchetti G.O., Devlin C.L., Seddon K.R., Bleaching systems in domestic laundry detergents: a review, RSC Adv, 5, pp. 65365-65384, (2015)
dc.relation.referencesBjorn A., Owsianiak M., Laurent A., Olsen S.I., Hauschild Corona A., Scope Definition., (2017)
dc.relation.referencesCarvajal E.A.V., Salas G.L.Z., Conscientious objection to euthanasia: a personalistic bioethical analysis for the Colombian case, Rev Lasallista Investig, 15, pp. 159-165, (2018)
dc.relation.referencesEnvironmental guide for the plastics sector (In Spanish)., (2004)
dc.relation.referencesMinistry of Health and Social Protection and Ministry of Environment and Sustainable Development, Bogotá, Colombia, Colombian Government, (2018)
dc.relation.referencesCheng K.C., Khoo Z.S., Lo N.W., Tan W.J., Chemmangattuvalappil N.G., Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants, Heliyon, 6, (2020)
dc.relation.referencesDe Koning A., Schowanek D., Dewaele J., Weisbrod A., Guinee J., Uncertainties in a carbon footprint model for detergents
dc.relation.referencesquantifying the confidence in a comparative result, Int J Life Cycle Assess, 15, pp. 79-89, (2010)
dc.relation.referencesDo D.N., Dang T.T., Le Q.T., Lam T.D., Bach L.G., Nguyen D.C., Toan T.Q., Extraction of saponin from gleditsia peel and applications on natural dishwashing liquid detergent, Mater Today Proc, 18, pp. 5219-5230, (2019)
dc.relation.referencesEcoinvent LCA database, Ecoinvent, v38, (2022)
dc.relation.referencesFalbe J., Surfactants in Consumer Products: Theory, Technology, and Application, (1987)
dc.relation.referencesGiagnorio M., Amelio A., Gruttner H., Tiraferri A., Environmental impacts of detergents and benefits of their recovery in the laundering industry, J Clean Prod, 154, pp. 593-601, (2017)
dc.relation.referencesGolsteijn L., Menkveld R., King H., Schneider C., Schowanek D., Nissen S.A., Compilation of life cycle studies for six household detergent product categories in Europe: the basis for product-specific A.I.S.E. Charter Advanced Sustainability Profiles, Environ Sci Eur, 27, 1, (2015)
dc.relation.referencesGomez E., Gonzalez G., Comportamiento del aceite de palma de Colombia en los principales mercados de exportación, Revista Lebret, 7, pp. 283-305, (2015)
dc.relation.referencesGrigore M.E., Methods of recycling, properties and applications of recycled thermoplastic polymers, Recycling, 2, pp. 1-11, (2017)
dc.relation.referencesHerrera Torreblanca X.J., Determinación y evaluación comparativa de la cinética de biodegradación de los tensioactivos lauril éter sulfato de sodio (Aniónico), alcohol etoxilado (No Iónico) y cocoamido propil betaína (Anfótero) en condiciones ambientales. Undergraduate thesis, School of Chemical Engineering, National University of San Agustin, Arequipa, (2017)
dc.relation.referencesHuijbregts M.A.J., Steinmann Z.J.N., Elshout P.M.F., Stam G., Verones F., Vieira M.D.M., Hollander A., Zijp M., van Zelm R., Recipe 2016 V1.1. a Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization, (2017)
dc.relation.referencesEnvironmental management — life cycle assessment — principles and framework. Vol. 2006. Second edi, Geneva: ISO, (2006)
dc.relation.referencesJaved A., Qazi J.I., Skin health implications of chemical detergents and importance of biodetergents, Punjab Univ J Zool, 31, pp. 277-294, (2016)
dc.relation.referencesKjellin M., Johansson I., Surfactants from renewable resources, John Wiley &, (2010)
dc.relation.referencesLatan H., Chiappetta Jabbour C.J., de Sousa L., Jabbour A.B., Wamba S.F., Shahbaz M., Effects of environmental strategy, environmental uncertainty and top management’s commitment on corporate environmental performance: the role of environmental management accounting, J Clean Prod, 180, pp. 297-306, (2018)
dc.relation.referencesMadariaga B.M., Ramos M.J., Tarazona J.V., Development of an European Quantitative Eutrophication Risk Assessment of Polyphosphates in Detergents: Model Implementation and Quantification of the Eutrophication Risk Associated to the Use of Phosphates in Detergents. Final Study Report. Green Planet Research Report Gpr-Ceep-06-2-Final. 2006. Carried out by Green Planet Research and INIA (Spanish National Institute for Agricultural and Food Research and Technology) for CEEP, (2007)
dc.relation.referencesMousavi S.A., Khodadoost F., Effects of detergents on natural ecosystems and wastewater treatment processes: a review, Environ Sci Pollut Res, 26, pp. 26439-26448, (2019)
dc.relation.referencesNasution M., Wibawa D., Ahamed T., Noguchi R., Comparative environmental impact evaluation of palm oil mill effluent treatment using a life cycle assessment approach: a case study based on composting and a combination for biogas technologies in North Sumatera of Indonesia, J Clean Prod, 184, pp. 1028-1040, (2018)
dc.relation.referencesOsorio-Tejada J.L., Llera-Sastresa E., Hashim A.H., Well-to-wheels approach for the environmental impact assessment of road freight services, Sustainability, 10, (2018)
dc.relation.referencesOsorio-Tejada J., Tran N.N., Hessel V., Techno-environmental assessment of small-scale Haber-Bosch and plasma-assisted ammonia supply chains, Sci Total Environ, 826, (2022)
dc.relation.referencesParlour L., Palm Oil Effects and Soaps that Contain Pal Oil, (2017)
dc.relation.referencesPertuz Martinez A.P., Santamaria Escobar A.E., La Palmicultura Colombiana: Sostenibilidad Económica, Social Y Ambiental, Tendencias, 15, (2014)
dc.relation.referencesSimapro V9. about Simapro 2022., (2022)
dc.relation.referencesRebello S., Anoopkumar A.N., Sindhu R., Binod P., Pandey A., Aneesh E.M., Comparative life-cycle analysis of synthetic detergents and biosurfactants-an overview, refining biomass residues for sustainable energy and bioproducts: Technology, advances, life cycle assessment, and economics, Elsevier Inc, (2019)
dc.relation.referencesRios L.A., Franco A., Echeverri D.A., Producción de alcoholes grasos a partir de aceites de palma y de palmiste utilizando procesos de hidrogenación catalítica, Una Revisión Bibliográfica Palmas, 27, pp. 65-76, (2006)
dc.relation.referencesSaswattecha K., Kroeze C., Jawjit W., Hein L., Assessing the environmental impact of palm oil produced in Thailand, J Clean Prod, 100, pp. 150-169, (2015)
dc.relation.referencesSaxena N., Pal N., Dey S., Mandal A., Characterizations of surfactant synthesized from palm oil and its application in enhanced oil recovery, J Taiwan Inst Chem Eng, 81, pp. 343-355, (2017)
dc.relation.referencesSchmidt J.H., Comparative life cycle assessment of rapeseed oil and palm oil, Int J Life Cycle Assess, 15, 2, pp. 183-197, (2010)
dc.relation.referencesSingh P., Patil Y., Rale V., Biosurfactant production: emerging trends and promising strategies, J Appl Microbiol, 126, pp. 2-13, (2019)
dc.relation.referencesSlamet I.M., Wulandari P.P., Synthesis of methyl ester sulfonate surfactant from crude palm oil as an active substance of laundry liquid detergent, AIP Conf Proc, 1904, (2017)
dc.relation.referencesSmulders E., von Rybinski W., Nordskog A., Laundry detergents, 1. Introduction, Ullmann’s Encyclopedia of Industrial Chemistry, (2012)
dc.relation.referencesSole Cabanes A., Tensioactivos en la industria textil, 3C Tecnol, 3, pp. 137-151, (2014)
dc.relation.referencesVallejo A.M.A., Utilización Del Análisis Del Ciclo De Vida En La evaluación Del Impacto Ambiental Del Cultivo Bajo Invernadero mediterráneo, (2004)
dc.relation.referencesViva Q., Producción de plástico parcialmente degradable con polietileno de alta densidad (PEAD) y la dextrina del desecho de Solanum tuberosum, Química Viva, 12, pp. 27-38, (2013)
dc.relation.referencesWang M., Tan G., Eljaszewicz A., Meng Y., Wawrzyniak P., Acharya S., Altunbulakli C., Westermann P., Dreher A., Yan L., Wang C., Akdis M., Zhang L., Nadeau K.C., Akdis C.A., Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells, J Allergy Clin Immunol, 143, pp. 1892-1903, (2019)
dc.relation.referencesZhao X., Cornish K., Vodovotz Y., Narrowing the gap for bioplastic use in food packaging: an update, Environ Sci Technol, 54, pp. 4712-4732, (2020)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsBioproducts
dc.subject.keywordsCleaning
dc.subject.keywordsDetergents
dc.subject.keywordsLCA
dc.subject.keywordsSoap
dc.subject.keywordsSustainability
dc.subject.keywordsWashing
dc.subject.keywordsAnimals
dc.subject.keywordsCarbon Footprint
dc.subject.keywordsDetergents
dc.subject.keywordsEcosystem
dc.subject.keywordsLife Cycle Stages
dc.subject.keywordsSurface-Active Agents
dc.subject.keywordsWater
dc.subject.keywordsColombia
dc.subject.keywordsdetergent
dc.subject.keywordssurfactant
dc.subject.keywordswater
dc.subject.keywordsalcohol
dc.subject.keywordscarbon footprint
dc.subject.keywordsdetergent
dc.subject.keywordseutrophication
dc.subject.keywordsfossil fuel
dc.subject.keywordsfreshwater
dc.subject.keywordsland use
dc.subject.keywordslife cycle
dc.subject.keywordsnitrogen
dc.subject.keywordsphosphorus
dc.subject.keywordsresource scarcity
dc.subject.keywordssubstitution
dc.subject.keywordsanimal
dc.subject.keywordscarbon footprint
dc.subject.keywordsecosystem
dc.subject.keywordslife cycle stage
dc.subject.keywordswater, 7732-18-5
dc.subject.keywordsDetergents,
dc.subject.keywordsSurface-Active Agents,
dc.subject.keywordsWater,
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue12


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem