Mostrar el registro sencillo del ítem
Method for the Improvement of Knee Angle Accuracy Based on Kinect and IMU: Preliminary Results
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Mayorca-Torres D. | |
dc.contributor.author | Caicedo-Eraso J.C. | |
dc.contributor.author | Peluffo-Ordoñez D.H. | |
dc.contributor.editor | Cota V.R. | |
dc.contributor.editor | Dias D.R. | |
dc.contributor.editor | Damázio L.C. | |
dc.contributor.editor | Barone D.A. | |
dc.contributor.other | 2nd Latin American Workshop on Computational Neuroscience, LAWCN 2019 | |
dc.date.accessioned | 2024-12-02T20:16:07Z | |
dc.date.available | 2024-12-02T20:16:07Z | |
dc.date.issued | 2019 | |
dc.identifier.isbn | 978-303036635-3 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/29023 | |
dc.description.abstract | One way to identify musculoskeletal disorders in the lower limb is through the functional examination where the ranges of normality of the joints are evaluated. Currently, this test can be performed with technological support, with optical sensors and inertial measurement sensors (IMU) being the most used. Kinect has been widely used for the functional evaluation of the human body, however, there are some limits to the movements made in the depth plane and when there is occlusion of the limbs. Inertial measurement sensors (IMU) allow orientation and acceleration measurements to be obtained with a high sampling rate, with some restrictions associated with drift. This article proposes a methodology that combines the acceleration measures of the IMU and kinect sensors in two planes of movement (Frontal and sagittal). These measurements are filtered in the preprocessing stage according to a Kalman filter and are obtained from a mathematical equation that allows them to be merged. The fusion system data obtains acceptable RMS error values of 5.5 and an average consistency of 92.5% for the sagittal plane with respect to the goniometer technique. The data is shown through an interface that allows the visualization of knee joint kinematic data, as well as tools for the analysis of signals by the health professional. © Springer Nature Switzerland AG 2019. | |
dc.description.sponsorship | This research work is supported by the seed group ?SIngBio Seedbed of Research in Engineering and Biomedical Sciences? of the Universidad de Caldas. In the same way, this work was supported by the Mechatronic Engineering research Group of the Mariana University. Also the authors are very grateful for the valuable support given by SDAS Research Group (www.sdas-group.com). | |
dc.format | 15 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Communications in Computer and Information Science | |
dc.source | Commun. Comput. Info. Sci. | |
dc.source | Scopus | |
dc.title | Method for the Improvement of Knee Angle Accuracy Based on Kinect and IMU: Preliminary Results | |
datacite.contributor | Facultad de Ingeniería, Universidad de la Mariana, Pasto, Colombia | |
datacite.contributor | Facultad de Ingeniería, Universidad de Caldas, Manizales, Colombia | |
datacite.contributor | Escuela de Ciencias Matemáticas y Computacionales Yachay Tech, San Miguel de Urcuquí, Ecuador | |
datacite.contributor | Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
datacite.contributor | Mayorca-Torres D., Facultad de Ingeniería, Universidad de la Mariana, Pasto, Colombia, Facultad de Ingeniería, Universidad de Caldas, Manizales, Colombia | |
datacite.contributor | Caicedo-Eraso J.C., Facultad de Ingeniería, Universidad de Caldas, Manizales, Colombia | |
datacite.contributor | Peluffo-Ordoñez D.H., Escuela de Ciencias Matemáticas y Computacionales Yachay Tech, San Miguel de Urcuquí, Ecuador, Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
datacite.contributor | 2nd Latin American Workshop on Computational Neuroscience, LAWCN 2019 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | D. Mayorca-Torres | |
dc.contributor.contactperson | Facultad de Ingeniería, Universidad de la Mariana, Pasto, Colombia | |
dc.contributor.contactperson | email: dmayorca@umariana.edu.co | |
dc.contributor.sponsor | Mechatronic Engineering research Group of the Mariana University | |
dc.contributor.sponsor | Universidad de Caldas | |
dc.contributor.sponsor | Shandong Academy of Sciences, SDAS | |
dc.contributor.sponsor | Capes | |
dc.contributor.sponsor | International Brain Research Organization | |
dc.contributor.sponsor | Unimed | |
dc.contributor.sponsor | Yed | |
dc.identifier.doi | 10.1007/978-3-030-36636-0_14 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076933673&doi=10.1007%2f978-3-030-36636-0_14&partnerID=40&md5=e0fd13525b5126d075e62cc728419830 | |
dc.relation.citationendpage | 199 | |
dc.relation.citationstartpage | 184 | |
dc.relation.citationvolume | 1068 CCIS | |
dc.relation.conferencedate | 18 September 2019 through 20 September 2019 | |
dc.relation.conferenceplace | São João Del-Rei | |
dc.relation.iscitedby | 3 | |
dc.relation.references | Rienk P., Jensen P.L., Tony L., Los Trastornos musculoesqueléticos De Origen Laboral En Los Estados Miembros De La Unión Europea, (2010) | |
dc.relation.references | Asociación Internacional De La Seguridad Social, (2013) | |
dc.relation.references | de Jaen U., Tratamiento De La tendinopatía Rotuliana | |
dc.relation.references | D'Souza J., Franzblau A., Werner R., Review of epidemiologic studies on occupational factors and lower extremity musculoskeletal and vascular disorders and symptoms, J. Occup. Rehabil., 15, 2, pp. 129-165, (2005) | |
dc.relation.references | Cifuentes C., Martinez F., Romero E., Análisis teórico y computacional de la marcha normal y patológica: Una revisión, Rev. Med., 18, 2, (2010) | |
dc.relation.references | Mariana Haro D., Laboratorio de análisis de marcha y movimiento, Rev. Médica Clínica Las Condes, 25, 2, pp. 237-247, (2014) | |
dc.relation.references | Stovring N.M., Et al., Multi-kinect skeleton fusion for enactive games, Artsit/Dli-2016. LNICST, 196, pp. 173-180, (2017) | |
dc.relation.references | Li S., Pathirana P.N., Caelli T., Multi-kinect skeleton fusion for physical rehabilitation monitoring. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2014, pp. 5060-5063, (2014) | |
dc.relation.references | Moon S., Park Y., Ko D.W., Suh I.H., Multiple kinect sensor fusion for human skeleton tracking using Kalman filtering, Int. J. Adv. Robot. Syst., 13, 2, (2016) | |
dc.relation.references | Bravo D.A., Rengifo C.F., Agredo W., Comparación de dos sistemas de captura de movimiento por medio de las trayectorias articulares de marcha, Rev. Mex. Ing. Biomédica, 37, 2, pp. 149-160, (2017) | |
dc.relation.references | Calderita L.V., Bandera J.P., Bustos P., Skiadopoulos A., Model-based reinforcement of kinect depth data for human motion capture applications, Sensors (Switzerland), 13, 7, pp. 8835-8855, (2013) | |
dc.relation.references | Dao T.T., Pouletaut P., Gamet D., Christine Ho Ba Tho M., Real-time rehabilitation system of systems for monitoring the biomechanical feedbacks of the musculoskeletal system, Knowledge and Systems Engineering. AISC, 326, pp. 553-565, (2015) | |
dc.relation.references | Connork P., Ross P., Biometric recognition by gait: A survey of modalities and features, Comput. Vis. Image Underst., 167, pp. 1-27, (2018) | |
dc.relation.references | Brandao A.F., Dias D.R.C., Castellano G., Parizotto N.A., Trevelin L.C., RehabGesture: An alternative tool for measuring human movement, Telemed. E-Health, 22, 7, pp. 584-589, (2016) | |
dc.relation.references | Napoli A., Glass S., Ward C., Tucker C., Obeid I., Performance analysis of a generalized motion capture system using microsoft kinect 2.0, Biomed. Signal Process. Control, 38, pp. 265-280, (2017) | |
dc.relation.references | Perez-Alba K., Leon-Aguilar A., Salido-Ruiz R., Estudio comparativo de métodos para el análisis del movimiento en 2D: Ventajas y desventajas del uso de mar-cadores, Memorias Del Congr. Nac. Ing. Biomédica, 4, 1, pp. 294-297, (2017) | |
dc.relation.references | Lin C.H., Liu J.C., Lin S.Y., 3-Dimension Personal Identification and Its Applications Based on Kinect, pp. 143-146, (2016) | |
dc.relation.references | Destelle F., Et al., Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors, 2014 22Nd European Signal Processing Conference (EUSIPCO), pp. 371-375, (2014) | |
dc.relation.references | Bo A., Hayashibe M., Poignet P., Padilha A., Joint angle estimation in rehabilitation with inertial sensors and its integration with Kinect, Conference Proceedings IEEE Engineering in Medicine and Biology Society, Boston, pp. 3479-3483, (2011) | |
dc.relation.references | Diebel J., Representing attitude: Euler angles, unit quaternions, and rotation vectors, Stanford, (2006) | |
dc.relation.references | Glonek G., Wojciechowski A., Hybrid orientation based human limbs motion tracking method, Standford, Switzerland, 17, 12, (2017) | |
dc.relation.references | Chen S., Brantley J., Kim T., Lach J., Characterizing and minimizing synchronization and calibration errors in inertial body sensor networks, Proceedings of the Fifth International Conference on Body Area Networks-Bodynets, Corfu, Greece, P, (2010) | |
dc.relation.references | Wahslen J., Orhan I., Lindh T., Local time synchronization in bluetooth piconets for data fusion using mobile phones, 2011 International Conference on Body Sensor Networks, pp. 133-138, (2011) | |
dc.relation.references | Tannous H., Istrate D., Benlarbi-Delai A., Sarrazin J., A New Multi-Sensor Fusion Scheme to Improve the Accuracy of Knee Flexion Kinematics for Functional Rehabilitation Movements Sensors | |
dc.relation.references | Brosseau L., Et al., Intra-and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions, Arch. Phys. Med. Rehabil., 82, 3, pp. 396-402, (2001) | |
dc.relation.references | Lesmes J.D., Evaluación clínico-funcional del movimiento corporal humano, Médica Panamericana, (2007) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Knee flexion | |
dc.subject.keywords | Motion analysis | |
dc.subject.keywords | Multisensor fusion | |
dc.subject.keywords | Orientation estimation | |
dc.subject.keywords | Acceleration measurement | |
dc.subject.keywords | Data visualization | |
dc.subject.keywords | Kalman filters | |
dc.subject.keywords | Motion analysis | |
dc.subject.keywords | Neurology | |
dc.subject.keywords | Physiological models | |
dc.subject.keywords | Sensor data fusion | |
dc.subject.keywords | Signal analysis | |
dc.subject.keywords | Functional evaluation | |
dc.subject.keywords | Functional examinations | |
dc.subject.keywords | Knee flexions | |
dc.subject.keywords | Knee joint kinematics | |
dc.subject.keywords | Mathematical equations | |
dc.subject.keywords | Musculoskeletal disorders | |
dc.subject.keywords | Orientation estimation | |
dc.subject.keywords | Technological supports | |
dc.subject.keywords | Joints (anatomy) | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]