Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorMayorca-Torres D.
dc.contributor.authorCaicedo-Eraso J.C.
dc.contributor.authorPeluffo-Ordoñez D.H.
dc.contributor.editorCota V.R.
dc.contributor.editorDias D.R.
dc.contributor.editorDamázio L.C.
dc.contributor.editorBarone D.A.
dc.contributor.other2nd Latin American Workshop on Computational Neuroscience, LAWCN 2019
dc.date.accessioned2024-12-02T20:16:07Z
dc.date.available2024-12-02T20:16:07Z
dc.date.issued2019
dc.identifier.isbn978-303036635-3
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29023
dc.description.abstractOne way to identify musculoskeletal disorders in the lower limb is through the functional examination where the ranges of normality of the joints are evaluated. Currently, this test can be performed with technological support, with optical sensors and inertial measurement sensors (IMU) being the most used. Kinect has been widely used for the functional evaluation of the human body, however, there are some limits to the movements made in the depth plane and when there is occlusion of the limbs. Inertial measurement sensors (IMU) allow orientation and acceleration measurements to be obtained with a high sampling rate, with some restrictions associated with drift. This article proposes a methodology that combines the acceleration measures of the IMU and kinect sensors in two planes of movement (Frontal and sagittal). These measurements are filtered in the preprocessing stage according to a Kalman filter and are obtained from a mathematical equation that allows them to be merged. The fusion system data obtains acceptable RMS error values of 5.5 and an average consistency of 92.5% for the sagittal plane with respect to the goniometer technique. The data is shown through an interface that allows the visualization of knee joint kinematic data, as well as tools for the analysis of signals by the health professional. © Springer Nature Switzerland AG 2019.
dc.description.sponsorshipThis research work is supported by the seed group ?SIngBio Seedbed of Research in Engineering and Biomedical Sciences? of the Universidad de Caldas. In the same way, this work was supported by the Mechatronic Engineering research Group of the Mariana University. Also the authors are very grateful for the valuable support given by SDAS Research Group (www.sdas-group.com).
dc.format15
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceCommunications in Computer and Information Science
dc.sourceCommun. Comput. Info. Sci.
dc.sourceScopus
dc.titleMethod for the Improvement of Knee Angle Accuracy Based on Kinect and IMU: Preliminary Results
datacite.contributorFacultad de Ingeniería, Universidad de la Mariana, Pasto, Colombia
datacite.contributorFacultad de Ingeniería, Universidad de Caldas, Manizales, Colombia
datacite.contributorEscuela de Ciencias Matemáticas y Computacionales Yachay Tech, San Miguel de Urcuquí, Ecuador
datacite.contributorCorporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributorMayorca-Torres D., Facultad de Ingeniería, Universidad de la Mariana, Pasto, Colombia, Facultad de Ingeniería, Universidad de Caldas, Manizales, Colombia
datacite.contributorCaicedo-Eraso J.C., Facultad de Ingeniería, Universidad de Caldas, Manizales, Colombia
datacite.contributorPeluffo-Ordoñez D.H., Escuela de Ciencias Matemáticas y Computacionales Yachay Tech, San Miguel de Urcuquí, Ecuador, Corporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributor2nd Latin American Workshop on Computational Neuroscience, LAWCN 2019
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonD. Mayorca-Torres
dc.contributor.contactpersonFacultad de Ingeniería, Universidad de la Mariana, Pasto, Colombia
dc.contributor.contactpersonemail: dmayorca@umariana.edu.co
dc.contributor.sponsorMechatronic Engineering research Group of the Mariana University
dc.contributor.sponsorUniversidad de Caldas
dc.contributor.sponsorShandong Academy of Sciences, SDAS
dc.contributor.sponsorCapes
dc.contributor.sponsorInternational Brain Research Organization
dc.contributor.sponsorUnimed
dc.contributor.sponsorYed
dc.identifier.doi10.1007/978-3-030-36636-0_14
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076933673&doi=10.1007%2f978-3-030-36636-0_14&partnerID=40&md5=e0fd13525b5126d075e62cc728419830
dc.relation.citationendpage199
dc.relation.citationstartpage184
dc.relation.citationvolume1068 CCIS
dc.relation.conferencedate18 September 2019 through 20 September 2019
dc.relation.conferenceplaceSão João Del-Rei
dc.relation.iscitedby3
dc.relation.referencesRienk P., Jensen P.L., Tony L., Los Trastornos musculoesqueléticos De Origen Laboral En Los Estados Miembros De La Unión Europea, (2010)
dc.relation.referencesAsociación Internacional De La Seguridad Social, (2013)
dc.relation.referencesde Jaen U., Tratamiento De La tendinopatía Rotuliana
dc.relation.referencesD'Souza J., Franzblau A., Werner R., Review of epidemiologic studies on occupational factors and lower extremity musculoskeletal and vascular disorders and symptoms, J. Occup. Rehabil., 15, 2, pp. 129-165, (2005)
dc.relation.referencesCifuentes C., Martinez F., Romero E., Análisis teórico y computacional de la marcha normal y patológica: Una revisión, Rev. Med., 18, 2, (2010)
dc.relation.referencesMariana Haro D., Laboratorio de análisis de marcha y movimiento, Rev. Médica Clínica Las Condes, 25, 2, pp. 237-247, (2014)
dc.relation.referencesStovring N.M., Et al., Multi-kinect skeleton fusion for enactive games, Artsit/Dli-2016. LNICST, 196, pp. 173-180, (2017)
dc.relation.referencesLi S., Pathirana P.N., Caelli T., Multi-kinect skeleton fusion for physical rehabilitation monitoring. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2014, pp. 5060-5063, (2014)
dc.relation.referencesMoon S., Park Y., Ko D.W., Suh I.H., Multiple kinect sensor fusion for human skeleton tracking using Kalman filtering, Int. J. Adv. Robot. Syst., 13, 2, (2016)
dc.relation.referencesBravo D.A., Rengifo C.F., Agredo W., Comparación de dos sistemas de captura de movimiento por medio de las trayectorias articulares de marcha, Rev. Mex. Ing. Biomédica, 37, 2, pp. 149-160, (2017)
dc.relation.referencesCalderita L.V., Bandera J.P., Bustos P., Skiadopoulos A., Model-based reinforcement of kinect depth data for human motion capture applications, Sensors (Switzerland), 13, 7, pp. 8835-8855, (2013)
dc.relation.referencesDao T.T., Pouletaut P., Gamet D., Christine Ho Ba Tho M., Real-time rehabilitation system of systems for monitoring the biomechanical feedbacks of the musculoskeletal system, Knowledge and Systems Engineering. AISC, 326, pp. 553-565, (2015)
dc.relation.referencesConnork P., Ross P., Biometric recognition by gait: A survey of modalities and features, Comput. Vis. Image Underst., 167, pp. 1-27, (2018)
dc.relation.referencesBrandao A.F., Dias D.R.C., Castellano G., Parizotto N.A., Trevelin L.C., RehabGesture: An alternative tool for measuring human movement, Telemed. E-Health, 22, 7, pp. 584-589, (2016)
dc.relation.referencesNapoli A., Glass S., Ward C., Tucker C., Obeid I., Performance analysis of a generalized motion capture system using microsoft kinect 2.0, Biomed. Signal Process. Control, 38, pp. 265-280, (2017)
dc.relation.referencesPerez-Alba K., Leon-Aguilar A., Salido-Ruiz R., Estudio comparativo de métodos para el análisis del movimiento en 2D: Ventajas y desventajas del uso de mar-cadores, Memorias Del Congr. Nac. Ing. Biomédica, 4, 1, pp. 294-297, (2017)
dc.relation.referencesLin C.H., Liu J.C., Lin S.Y., 3-Dimension Personal Identification and Its Applications Based on Kinect, pp. 143-146, (2016)
dc.relation.referencesDestelle F., Et al., Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors, 2014 22Nd European Signal Processing Conference (EUSIPCO), pp. 371-375, (2014)
dc.relation.referencesBo A., Hayashibe M., Poignet P., Padilha A., Joint angle estimation in rehabilitation with inertial sensors and its integration with Kinect, Conference Proceedings IEEE Engineering in Medicine and Biology Society, Boston, pp. 3479-3483, (2011)
dc.relation.referencesDiebel J., Representing attitude: Euler angles, unit quaternions, and rotation vectors, Stanford, (2006)
dc.relation.referencesGlonek G., Wojciechowski A., Hybrid orientation based human limbs motion tracking method, Standford, Switzerland, 17, 12, (2017)
dc.relation.referencesChen S., Brantley J., Kim T., Lach J., Characterizing and minimizing synchronization and calibration errors in inertial body sensor networks, Proceedings of the Fifth International Conference on Body Area Networks-Bodynets, Corfu, Greece, P, (2010)
dc.relation.referencesWahslen J., Orhan I., Lindh T., Local time synchronization in bluetooth piconets for data fusion using mobile phones, 2011 International Conference on Body Sensor Networks, pp. 133-138, (2011)
dc.relation.referencesTannous H., Istrate D., Benlarbi-Delai A., Sarrazin J., A New Multi-Sensor Fusion Scheme to Improve the Accuracy of Knee Flexion Kinematics for Functional Rehabilitation Movements Sensors
dc.relation.referencesBrosseau L., Et al., Intra-and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions, Arch. Phys. Med. Rehabil., 82, 3, pp. 396-402, (2001)
dc.relation.referencesLesmes J.D., Evaluación clínico-funcional del movimiento corporal humano, Médica Panamericana, (2007)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsKnee flexion
dc.subject.keywordsMotion analysis
dc.subject.keywordsMultisensor fusion
dc.subject.keywordsOrientation estimation
dc.subject.keywordsAcceleration measurement
dc.subject.keywordsData visualization
dc.subject.keywordsKalman filters
dc.subject.keywordsMotion analysis
dc.subject.keywordsNeurology
dc.subject.keywordsPhysiological models
dc.subject.keywordsSensor data fusion
dc.subject.keywordsSignal analysis
dc.subject.keywordsFunctional evaluation
dc.subject.keywordsFunctional examinations
dc.subject.keywordsKnee flexions
dc.subject.keywordsKnee joint kinematics
dc.subject.keywordsMathematical equations
dc.subject.keywordsMusculoskeletal disorders
dc.subject.keywordsOrientation estimation
dc.subject.keywordsTechnological supports
dc.subject.keywordsJoints (anatomy)
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem