Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorLoaiza-Monsalve D.
dc.contributor.authorRiascos A.P.
dc.date.accessioned2024-12-02T20:16:04Z
dc.date.available2024-12-02T20:16:04Z
dc.date.issued2019
dc.identifier.issn19326203
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29015
dc.description.abstractThe understanding of human mobility patterns in different transportation modes is an interdisciplinary research field with a direct impact in aspects as varied as urban planning, traffic optimization, sustainability, the reduction of operating costs as well as the mitigation of pollution in urban areas. In this paper, we study the global activity of users in bike-sharing systems operating in the cities of Chicago and New York. For this transportation mode, we explore the temporal and spatial characteristics of the mobility of cyclists. In particular, through the analysis of origin-destination matrices, we characterize the spatial structure of the displacements of users. We apply a mobility model for the global activity of the system that classifies the displacements between stations in local and non-local transitions. In local transitions, cyclists move in a region around each station whereas, in the non-local case, bike users travel with long-range displacements in a similar way to Lévy flights. We reproduce the spatial dynamics by using Monte Carlo simulations. The obtained results are similar to the observed in real data and reveal that the model implemented captures important characteristics of the global spatial dynamics in the systems analyzed. © 2019 Loaiza-Monsalve, Riascos. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPublic Library of Science
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourcePLoS ONE
dc.sourcePLoS ONE
dc.sourceScopus
dc.titleHuman mobility in bike-sharing systems: Structure of local and non-local dynamics
datacite.contributorDepartment of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia
datacite.contributorInstituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
datacite.contributorLoaiza-Monsalve D., Department of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia
datacite.contributorRiascos A.P., Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonA.P. Riascos
dc.contributor.contactpersonInstituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
dc.contributor.contactpersonemail: aaappprrr@gmail.com
dc.identifier.doi10.1371/journal.pone.0213106
dc.identifier.instnameUniversidad Mariana
dc.identifier.localPOLNC
dc.identifier.locale0213106
dc.identifier.pissn30840674
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062611860&doi=10.1371%2fjournal.pone.0213106&partnerID=40&md5=ac15b2e809810f6b38d7a82f3935124b
dc.relation.citationvolume14
dc.relation.iscitedby22
dc.relation.referencesOrtuzar J., Willumsen L.G., Modelling Transport, (2011)
dc.relation.referencesBatty M., The New Science of Cities, (2013)
dc.relation.referencesBarthelemy M., The Structure and Dynamics of Cities: Urban Data Analysis and Theoretical Modeling, (2016)
dc.relation.referencesWest G., Scale: The Universal Laws of Life, Growth, and Death in Organisms, Cities, and Companies, (2017)
dc.relation.referencesBarbosa H., Barthelemy M., Ghoshal G., James C.R., Lenormand M., Louail T., Et al., Human mobility: Models and applications, Phys Rep, 734, pp. 1-74, (2018)
dc.relation.referencesPeng C., Jin X., Wong K.C., Shi M., Lio P., Collective human mobility pattern from taxi trips in urban area, PLoS ONE, 7, 4, (2012)
dc.relation.referencesMa C., He R., Zhang W., Path optimization of taxi carpooling, PLoS ONE, 13, 8, (2018)
dc.relation.referencesQing C., Hao W., A methodology for measuring and monitoring congested corridors: Applications in manhattan using taxi GPS data, J Urban Technol, 25, 4, pp. 59-75, (2018)
dc.relation.referencesGan Z., Yang M., Feng T., Timmermans H., Understanding urban mobility patterns from a spatiotemporal perspective: Daily ridership profiles of metro stations, Transportation, (2018)
dc.relation.referencesWan D., Kamga C., Hao W., Sugiura A., Beaton E.B., Customer satisfaction with bus rapid transit: A study of New York City select bus service applying structural equation modeling, Public Transport, 8, 3, pp. 497-520, (2016)
dc.relation.referencesGallotti R., Barthelemy M., Anatomy and efficiency of urban multimodal mobility, Sci Rep, 4, (2014)
dc.relation.referencesZhao K., Musolesi M., Hui P., Rao W., Tarkoma S., Explaining the power-law distribution of human mobility through transportation modality decomposition, Sci Rep, 5, (2015)
dc.relation.referencesAleta A., Meloni S., Moreno Y., A Multilayer perspective for the analysis of urban transportation systems, Sci Rep, 7, (2017)
dc.relation.referencesFishman E., Bikeshare: A review of recent literature, Transport Rev, 36, 1, pp. 92-113, (2016)
dc.relation.referencesWang M., Zhou X., Bike-sharing systems and congestion: Evidence from US cities, J Transp Geogr, 65, pp. 147-154, (2017)
dc.relation.referencesFaghih-Imani A., Eluru N., Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system, J Transp Geogr, 54, pp. 218-227, (2016)
dc.relation.referencesSun Y., Mobasheri A., Hu X., Wang W., Investigating impacts of environmental factors on the cycling behavior of bicycle-sharing users, Sustainability, 9, 6, (2017)
dc.relation.referencesChang X., Shen J., Lu X., Huang S., Statistical patterns of human mobility in emerging Bicycle Sharing Systems, PLoS ONE, 13, 3, (2018)
dc.relation.referencesZaltz Austwick M., O'Brien O., Strano E., Viana M., The structure of spatial networks and communities in bicycle sharing systems, PLoS ONE, 8, 9, (2013)
dc.relation.referencesSarkar A., Lathia N., Mascolo C., Comparing cities’ cycling patterns using online shared bicycle maps, Transportation, 42, 4, pp. 541-559, (2015)
dc.relation.referencesMedard de Chardon C., Caruso G., Estimating bike-share trips using station level data, Transp Res B Methodol, 78, pp. 260-279, (2015)
dc.relation.referencesCastillo-Manzano J.I., Lopez-Valpuesta L., Sanchez-Braza A., Going a long way? On your bike! Comparing the distances for which public bicycle sharing system and private bicycles are used, Appl Geogr, 71, pp. 95-105, (2016)
dc.relation.referencesZhou X., Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in Chicago, PLoS ONE, 10, 10, (2015)
dc.relation.referencesFaghih-Imani A., Anowar S., Miller E.J., Eluru N., Hail a cab or ride a bike? A travel time comparison of taxi and bicycle-sharing systems in New York City, Transp Res A Policy Pract, 101, pp. 11-21, (2017)
dc.relation.referencesMedard de Chardon C., Caruso G., Thomas I., Bike-share rebalancing strategies, patterns, and purpose, J Transp Geogr, 55, pp. 22-39, (2016)
dc.relation.referencesJurdak R., The impact of cost and network topology on urban mobility: A study of public bicycle usage in 2 U.S. Cities, PLoS ONE, 8, 11, (2013)
dc.relation.referencesLouf R., Barthelemy M., How congestion shapes cities: From mobility patterns to scaling, Sci Rep, 4, (2014)
dc.relation.referencesLee M., Holme P., Relating land use and human intra-city mobility, PLoS ONE, 10, 10, (2015)
dc.relation.referencesLiu X., Gong L., Gong Y., Liu Y., Revealing travel patterns and city structure with taxi trip data, J Transp Geogr, 43, pp. 78-90, (2015)
dc.relation.referencesRiascos A.P., Universal scaling of the distribution of land in urban areas, Phys Rev E, 96, (2017)
dc.relation.referencesPucher J., Buehler R., Cycling towards a more sustainable transport future, Transport Rev, 1647, pp. 1-6, (2017)
dc.relation.referencesDivvy Data: Historical Trip Data Available to The Public
dc.relation.referencesSystem Data
dc.relation.referencesCampbell K.B., Brakewood C., Sharing riders: How bikesharing impacts bus ridership in New York City, Transp Res Part A Policy Pract, 100, pp. 264-282, (2017)
dc.relation.referencesZhang J., Pan X., Li M., Yu P.S., Bicycle-sharing system analysis and trip prediction, 17th IEEE International Conference on Mobile Data Management, 1, pp. 174-179, (2016)
dc.relation.referencesZhang J., Yu P.S., Trip route planning for bicycle-sharing systems, IEEE 2nd International Conference on Collaboration and Internet Computing, pp. 381-390, (2016)
dc.relation.referencesJia Z., Xie G., Gao J., Yu S., Bike-sharing system: A big-data perspective, Smart Computing and Communication, pp. 548-557, (2017)
dc.relation.referencesRiascos A.P., Mateos J.L., Emergence of encounter networks due to human mobility, PLoS ONE, 12, 10, (2017)
dc.relation.referencesBarabasi A.L., The origin of bursts and heavy tails in human dynamics, Nature, 435, (2005)
dc.relation.referencesRamos-Fernandez G., Mateos J.L., Miramontes O., Cocho G., Larralde H., Ayala-Orozco B., Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi), Behav Ecol Sociobiol, 55, 3, pp. 223-230, (2004)
dc.relation.referencesBoyer D., Ramos-Fernandez G., Miramontes O., Mateos J.L., Cocho G., Larralde H., Et al., Scale-free foraging by primates emerges from their interaction with a complex environment, Proc R Soc B, 273, 1595, pp. 1743-1750, (2006)
dc.relation.referencesViswanathan G.M., da Luz M.G.E., Raposo E.P., Stanley H.E., The Physics of Foraging, (2011)
dc.relation.referencesBrockmann D., Hufnagel L., Geisel T., The scaling laws of human travel, Nature, 439, pp. 462-465, (2006)
dc.relation.referencesGonzalez M.C., Hidalgo C.A., Barabasi A.L., Understanding individual human mobility patterns, Nature, 453, pp. 779-782, (2008)
dc.relation.referencesSong C., Koren T., Wang P., Barabasi A.L., Modelling the scaling properties of human mobility, Nat Phys, 6, 10, pp. 818-823, (2010)
dc.relation.referencesKuhn S.L., Raichlen D.A., Clark A.E., What moves us? How mobility and movement are at the center of human evolution, Evol Athropol, 25, 3, pp. 86-97, (2016)
dc.relation.referencesZaburdaev V., Denisov S., Klafter J., Lévy walks, Rev Mod Phys, 87, pp. 483-530, (2015)
dc.relation.referencesBarthelemy M., Spatial networks, Phys Rep, 499, 1-3, pp. 1-101, (2011)
dc.relation.referencesChapra S.C., Canale R., Numerical Methods for Engineers, (2006)
dc.relation.referencesWosniack M.E., Santos M.C., Raposo E.P., Viswanathan G.M., Da Luz M.G.E., The evolutionary origins of Lévy walk foraging, PLoS Comput Biol, 13, 10, (2017)
dc.relation.referencesMetzler R., Klafter J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys Rep, 339, 1, pp. 1-77, (2000)
dc.relation.referencesRiascos A.P., Mateos J.L., Long-range navigation on complex networks using Lévy random walks, Phys Rev E, 86, (2012)
dc.relation.referencesEstrada E., Delvenne J.C., Hatano N., Mateos J.L., Metzler R., Riascos A.P., Et al., Random multi-hopper model: Super-fast random walks on graphs, J Compl Net, 6, 3, pp. 382-403, (2018)
dc.relation.referencesRiascos A.P., Mateos J.L., Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights, Phys Rev E, 90, (2014)
dc.relation.referencesRiascos A.P., Mateos J.L., Fractional diffusion on circulant networks: Emergence of a dynamical small world, J Stat Mech Theory Exp, 2015, 7, (2015)
dc.relation.referencesMichelitsch T.M., Collet B.A., Riascos A.P., Nowakowski A.F., Nicolleau F.C.G.A., Fractional random walk lattice dynamics, J Phys A: Math Theor, 50, 5, (2017)
dc.relation.referencesRiascos A.P., Michelitsch T.M., Collet B.A., Nowakowski A.F., Nicolleau F.C.G.A., Random walks with long-range steps generated by functions of Laplacian matrices, J Stat Mech Theory Exp, 2018, 4, (2018)
dc.relation.referencesLiben-Nowell D., Novak J., Kumar R., Raghavan P., Tomkins A., Geographic routing in social networks, Proc Natl Acad Sci USA, 102, 33, pp. 11623-11628, (2005)
dc.relation.referencesNoulas A., Scellato S., Lambiotte R., Pontil M., Mascolo C., A tale of many cities: Universal patterns in human urban mobility, PLoS ONE, 7, 5, (2012)
dc.relation.referencesPan W., Ghoshal G., Krumme C., Cebrian M., Pentland A., Urban characteristics attributable to density-driven tie formation, Nat Commun, 4, (2013)
dc.relation.referencesSimini F., Gonzalez M.C., Maritan A., Barabasi A.L., A universal model for mobility and migration patterns, Nature, 484, 7392, pp. 96-100, (2012)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsBicycling
dc.subject.keywordsChicago
dc.subject.keywordsCities
dc.subject.keywordsHumans
dc.subject.keywordsMonte Carlo Method
dc.subject.keywordsNew York
dc.subject.keywordsPattern Recognition, Automated
dc.subject.keywordsSpatio-Temporal Analysis
dc.subject.keywordsTransportation
dc.subject.keywordsTravel
dc.subject.keywordsarticle
dc.subject.keywordscity
dc.subject.keywordscyclist
dc.subject.keywordshuman
dc.subject.keywordsIllinois
dc.subject.keywordsMonte Carlo method
dc.subject.keywordsNew York
dc.subject.keywordstravel
dc.subject.keywordsautomated pattern recognition
dc.subject.keywordscycling
dc.subject.keywordsprocedures
dc.subject.keywordsspatiotemporal analysis
dc.subject.keywordstraffic and transport
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue3


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem