Mostrar el registro sencillo del ítem
Assessment of the Safety Factor Evolution of the Shotcrete Lining for Different Curing Ages
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Oreste P. | |
dc.contributor.author | Spagnoli G. | |
dc.contributor.author | Luna Ramos C.A. | |
dc.contributor.author | Hedayat A. | |
dc.date.accessioned | 2024-12-02T20:16:01Z | |
dc.date.available | 2024-12-02T20:16:01Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 9603182 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/29011 | |
dc.description.abstract | The behavior of the shotcrete linings during the tunnel construction is complex due to the variability of its mechanical characteristics during the curing time. After the installation of the support structure, the lining is loaded along with the excavation face. A new calculation procedure involving two analytical methods, i.e. the convergence-confinement method and hyperstatic reaction method, have been developed. By means of these two methods, it is possible to assess the evolution of the stress state in the lining, and therefore, also of the safety factor with respect to the failure in compression of the shotcrete. Due to the analysis of the safety factor evolution over time, it is possible to correctly design the lining, to choose the type of sprayed concrete and to define the maximum admissible advance rate of the excavation face, in order not to critically load the lining. In the following paper, after having shown the definition of the safety factor, a parametric analysis is performed, in order to investigate the evolution of the safety factor of the lining for two different rock types, three different shotcrete types and two tunnel advance rates have been considered. © 2019, Springer Nature Switzerland AG. | |
dc.format | 8 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer International Publishing | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Geotechnical and Geological Engineering | |
dc.source | Geotech. Geol. Eng. | |
dc.source | Scopus | |
dc.title | Assessment of the Safety Factor Evolution of the Shotcrete Lining for Different Curing Ages | |
datacite.contributor | Department of Environmental, Land and Infrastructural Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Turin, 10129, Italy | |
datacite.contributor | BASF Construction Solutions GmbH, Dr.-Albert-Frank-Straße 32, Trostberg, 83308, Germany | |
datacite.contributor | Faculty of Engineering, Universidad Mariana, Calle 18 No. 34-104, Pasto, Colombia | |
datacite.contributor | Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, 80401, CO, United States | |
datacite.contributor | Oreste P., Department of Environmental, Land and Infrastructural Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Turin, 10129, Italy | |
datacite.contributor | Spagnoli G., BASF Construction Solutions GmbH, Dr.-Albert-Frank-Straße 32, Trostberg, 83308, Germany | |
datacite.contributor | Luna Ramos C.A., Faculty of Engineering, Universidad Mariana, Calle 18 No. 34-104, Pasto, Colombia | |
datacite.contributor | Hedayat A., Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, 80401, CO, United States | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | G. Spagnoli | |
dc.contributor.contactperson | BASF Construction Solutions GmbH, Trostberg, Dr.-Albert-Frank-Straße 32, 83308, Germany | |
dc.contributor.contactperson | email: giovanni.spagnoli@basf.com | |
dc.identifier.doi | 10.1007/s10706-019-00990-2 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | GGENE | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068194545&doi=10.1007%2fs10706-019-00990-2&partnerID=40&md5=64a7347a1b56699b1a8ceff745431db8 | |
dc.relation.citationendpage | 5563 | |
dc.relation.citationstartpage | 5555 | |
dc.relation.citationvolume | 37 | |
dc.relation.iscitedby | 7 | |
dc.relation.references | Aydan O., Sezaki M., Kawamoto T., Mechanical and numerical modelling of shotcrete, Numerical models in geomechanics, pp. 707-7016, (1992) | |
dc.relation.references | Bieniawski Z.T., Determining rock mass deformability, Int J Rock Mech Min Sci, 15, pp. 335-343, (1978) | |
dc.relation.references | Bryne L.E., Time Dependent Material Properties of Shotcrete for Hard Rock Tunneling, (2014) | |
dc.relation.references | Chang Y., Stille H., Influence of early age properties of shotcrete on tunnel construction sequences, Shotcrete for underground support VI, pp. 110-117, (1993) | |
dc.relation.references | Chen W.F., Plasticity in reinforced concrete, (1982) | |
dc.relation.references | Clements M., Comparison of methods for early age strength testing of sprayed fibre reinforced concrete, Proceedings of the 2nd international conference on engineering developments in sprayed fibre reinforced concrete, Cairns, Queensland, Australia, pp. 81-87, (2004) | |
dc.relation.references | Shotcrete in Australia, (2010) | |
dc.relation.references | De Belie N., Grosse C.U., Kurz J., Reinhardt H.W., Ultrasound monitoring of the influence of different accelerating admixtures and cement types for shotcrete on setting and hardening behavior, Cem Concrete Res, 35, pp. 2087-2094, (2005) | |
dc.relation.references | Spritzbeton - Nationale Anwendungsregeln zur Reihe DIN EN 14487 und Regeln für die Bemessung von Spritzbetonkonstruktionen, (2014) | |
dc.relation.references | DiNoia T., Sandberg P., Alkali-free shotcrete accelerator interactions with cement and admixtures, Shotcrete: More Engineering Developments, pp. 137-144, (2004) | |
dc.relation.references | Do N.A., Dias D., Oreste P., Djeran-Maigre I., A new numerical approach to the hyperstatic reaction method for segmental tunnel linings, Int J Numer Anal Meth Geomech, 38, pp. 1617-1632, (2014) | |
dc.relation.references | Do N.A., Dias D., Oreste P., Djeran-Maigre I., The behavior of the segmental tunnel lining studied by the hyperstatic reaction method, Eur J Environ Civ Eng, 18, 4, pp. 489-510, (2014) | |
dc.relation.references | Fahimifar A., Hedayat A., Determination of ground response curve of the supported tunnel considering progressive hardening of shotcrete lining, Proceedings of the 5Th Asian Rock Mechanics Symposium, (2008) | |
dc.relation.references | Fahimifar A., Hedayat A., Elasto-plastic analysis in conventional tunnelling excavation, Proc Inst Civ Eng Geotech Eng, 163, 1, pp. 37-45, (2010) | |
dc.relation.references | Feenstra P.H., de Borst B., Aspects of robust computational models for plain and reinforced concrete, Heron, 48, 4, pp. 5-73, (1993) | |
dc.relation.references | Graziani A., Boldini D., Ribacchi R., Practical estimate of deformations and stress relief factors for deep tunnels supported by shotcrete, Rock Mech Rock Eng, 38, 5, pp. 345-372, (2005) | |
dc.relation.references | Hellmich C., Ulm F.J., Mang H.A., Multisurface chemoplasticity II: numerical studies on NATM-tunneling, J Eng Mech-ASCE, 125, 6, pp. 702-714, (1999) | |
dc.relation.references | Iwaki K., Hirama A., Mitani K., Kaise S., Nakagawa K., A quality control method for shotcrete strength by pneumatic pin penetration test, NDT and E Int, 34, 6, pp. 395-402, (2001) | |
dc.relation.references | Kotsovos M.D., Newman J.B., Generalized stress-strain relation for concrete, J Eng Mech-ASCE, 104, pp. 845-856, (1978) | |
dc.relation.references | Melbye T., Sprayed concrete for rock support, (1994) | |
dc.relation.references | Meschke G., Elasto-Viskoplastische Stoffmodelle Fur Numeriscbe Simulationen Mittels Der Methode Der Finiten Elemente, (1996) | |
dc.relation.references | Mohajerani A., Rodrigues D., Ricciuti C., Wilson C., Early-age strength measurement of shotcrete, J Mater, (2015) | |
dc.relation.references | Moussa A.M., Finite element modelling of shotcrete in tunnelling, (1993) | |
dc.relation.references | Neuner M., Schreter M., Unteregger D., Hofstetter G., Influence of the constitutive model for shotcrete on the predicted structural behavior of the shotcrete shell of a deep tunnel, Materials, 10, (2017) | |
dc.relation.references | Neville A.M., Dilger W.H., Brooks J.J., Creep of plain and structural concrete, (1983) | |
dc.relation.references | Oreste P., Procedure for determining the reaction curve of shotcrete lining considering transient conditions, Rock Mech Rock Eng, 36, 3, pp. 209-236, (2003) | |
dc.relation.references | Oreste P., A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports, Tunn Undergr Sp Technol, 22, pp. 185-205, (2007) | |
dc.relation.references | Oreste P., The convergence-confinement method: roles and limits in modern geomechanical tunnel design, Am J Appl Sci, 6, 4, pp. 757-771, (2009) | |
dc.relation.references | Oreste P., The Determination of the tunnel structure loads through the analysis of the Interaction between the void and the support using the convergence-confinement method, Am J Appl Sci, 11, 11, pp. 1945-1954, (2014) | |
dc.relation.references | Oreste P., Spagnoli G., Luna Ramos C.A., Sebille L., The hyperstatic reaction method for the analysis of the sprayed concrete linings behavior in tunneling, Geotech Geol Eng, 36, 4, pp. 2143-2169, (2018) | |
dc.relation.references | Oreste P., Spagnoli G., Luna Ramos C.A., The elastic modulus variation during the shotcrete curing jointly investigated by the convergence-confinement and the hyperstatic reaction methods, Geotech Geol Eng, 37, 3, pp. 1435-1452, (2019) | |
dc.relation.references | Pan Y.W., Huang Z.L., A model for the time dependent interaction between rock and shotcrete support in a tunnel, Int J Rock Mech Min Sci, 31, 3, pp. 213-219, (1994) | |
dc.relation.references | Pottler R., Time-dependent rock: shotcrete interaction a numerical shortcut, Comput Geotech, 9, 3, pp. 149-169, (1990) | |
dc.relation.references | Admixtures for Concrete, Mortar and grout—part 5: Admixtures for Sprayed concrete—definitions, Requirements and Conformity, (2003) | |
dc.relation.references | Prudencio L.R., Accelerating admixture for shotcrete, Cem Concr Compos, 20, pp. 213-219, (1998) | |
dc.relation.references | Qiu Y., Ding B., Gan J., Guo Z., Zheng C., Jiang H., Mechanism and preparation of liquid alkali-free liquid setting accelerator for shotcrete, IOP Conf Ser Mater Sci Eng, 182, (2017) | |
dc.relation.references | Rispin M., Howard D., Kleven O.B., Garshol K., Gelson J., Safer, Deeper, Faster: Sprayed Concrete: An Integral Component of Development Mining, (2009) | |
dc.relation.references | Rokhar R.B., Zachow R., Ein neues Verfahren zur taglichen Kontrolle der Auslastung einer Spritzbetonschale, Felsbau, 15, 6, pp. 430-434, (1997) | |
dc.relation.references | Schadlich B., Schweiger H.F., A new constitutive model for shotcrete, Numerical methods in geotechnical engineering, pp. 103-108, (2014) | |
dc.relation.references | Schutz R., Numerical Modelling of Shotcrete for Tunneling, (2010) | |
dc.relation.references | Schutz R., Potts D.M., Zdravkovic L., Advanced constitutive modelling of shotcrete: model formulation and calibration, Comput Geotech, 38, 6, pp. 834-845, (2011) | |
dc.relation.references | Spagnoli G., Oreste P., Lo Bianco L., New equations for estimating radial loads on deep shaft linings in weak rocks, Int J Geomech, 16, 6, (2016) | |
dc.relation.references | Spagnoli G., Oreste P., Lo Bianco L., Estimation of shaft radial displacement beyond the excavation bottom before installation of permanent lining in nondilatant weak rocks with a novel formulation, Int J Geomech, 17, 9, (2017) | |
dc.relation.references | Thomas A., Sprayed concrete lined tunnels, (2009) | |
dc.relation.references | Weber J.W., Empirische Formeln Zur Beschreibung Der Festigkeitsentwicklung Und Der Entwicklung Des E-Moduls Von Beton. Betonwerk-Und-Fertigteiltechnik, pp. 753-759, (1979) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Accelerator | |
dc.subject.keywords | Convergence-confinement method | |
dc.subject.keywords | Curing age | |
dc.subject.keywords | Hyperstatic reaction method | |
dc.subject.keywords | Safety factor | |
dc.subject.keywords | Sprayed concrete | |
dc.subject.keywords | Concretes | |
dc.subject.keywords | Curing | |
dc.subject.keywords | Excavation | |
dc.subject.keywords | Factor analysis | |
dc.subject.keywords | Particle accelerators | |
dc.subject.keywords | Shotcreting | |
dc.subject.keywords | Supports | |
dc.subject.keywords | Tunnel linings | |
dc.subject.keywords | Calculation procedure | |
dc.subject.keywords | Convergence-confinement method | |
dc.subject.keywords | Curing age | |
dc.subject.keywords | Mechanical characteristics | |
dc.subject.keywords | Parametric -analysis | |
dc.subject.keywords | Reaction method | |
dc.subject.keywords | Sprayed concrete | |
dc.subject.keywords | Tunnel construction | |
dc.subject.keywords | analytical method | |
dc.subject.keywords | assessment method | |
dc.subject.keywords | compression | |
dc.subject.keywords | concrete | |
dc.subject.keywords | safety | |
dc.subject.keywords | shotcrete | |
dc.subject.keywords | stress analysis | |
dc.subject.keywords | tunnel | |
dc.subject.keywords | Safety factor | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.spa | Artículo científico | |
dc.relation.citationissue | 6 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]