Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorLafaurie L.G.
dc.contributor.authorSuaza Y.A.
dc.contributor.authorLaroze D.
dc.contributor.authorGutiérrez W.
dc.contributor.authorMarín J.H.
dc.date.accessioned2024-12-02T20:15:59Z
dc.date.available2024-12-02T20:15:59Z
dc.date.issued2024
dc.identifier.issn9214526
dc.identifier.urihttps://hdl.handle.net/20.500.14112/29000
dc.description.abstractA systematic study of the thermal properties of an artificial molecule formed by a single electron embedded in two laterally coupled quantum rings under external probes: magnetic and static electric fields was carried out. The eigen-states and eigen-values of the Hamiltonian in the effective mass approximation were obtained numerically. By varying the distance between the centers of the rings, it was possible to establish the equilibrium length required by the formation of a giant stable artificial molecular complex and its dissociation energy. These features were corroborated by studying the effects of the distance between centers of the rings, the magnetic and electric field on the entropy and heat capacity of the system. At low temperatures, the equilibrium condition of the artificial molecule is linked to the formation of a minimum value of the entropy and a peak in the heat capacity. The temperature's rising modifies substantially these conditions. © 2024 Elsevier B.V.
dc.description.sponsorshipFunding text 1: This work was supported by the Colombian agency of Science and Technology: Colciencias [QUIPU number 201010038376 ].
dc.description.sponsorshipFunding text 2: J. H. Marín gratefully acknowledge the financial support to develop the Project: “Estudio de las propiedades electro-ópticas de nanoestructuras semiconductoras acopladas tipo punto-anillo su evaluación preliminar como candidatos para aplicaciones en sistemas de información cuántica” with QUIPU number 201010038376. Y.A. Suaza thanks the economic support of the Colombian agency of Science and Technology: Colciencias and Institución Universitaria Pascual Bravo. W. Gutiérrez thanks the Universidad Industrial de Santander for the time to carry out this research project.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier B.V.
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourcePhysica B: Condensed Matter
dc.sourcePhys B Condens Matter
dc.sourceScopus
dc.titleThermodynamic properties of an artificial molecule quantum rings: Geometric and external field effects
datacite.contributorGrupo de Investigación Ambiental GIA, Universidad Mariana, San Juan de Pasto, Colombia
datacite.contributorGrupo de Investigación en Ciencias Electrónicas e Informáticas-GICEI-Institución Universitaria Pascual Bravo, Medellín, AA 6564, Colombia
datacite.contributorInstituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile
datacite.contributorGrupo Ficomaco, Escuela de Física, Universidad Industrial de Santander, Bucaramanga, AA 678, Colombia
datacite.contributorGrupo Cerámicos y Vítreos, Escuela de Física, Universidad Nacional de Colombia, Medellín, AA 3840, Colombia
datacite.contributorLafaurie L.G., Grupo de Investigación Ambiental GIA, Universidad Mariana, San Juan de Pasto, Colombia
datacite.contributorSuaza Y.A., Grupo de Investigación en Ciencias Electrónicas e Informáticas-GICEI-Institución Universitaria Pascual Bravo, Medellín, AA 6564, Colombia
datacite.contributorLaroze D., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile
datacite.contributorGutiérrez W., Grupo Ficomaco, Escuela de Física, Universidad Industrial de Santander, Bucaramanga, AA 678, Colombia
datacite.contributorMarín J.H., Grupo Cerámicos y Vítreos, Escuela de Física, Universidad Nacional de Colombia, Medellín, AA 3840, Colombia
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonL.G. Lafaurie
dc.contributor.contactpersonGrupo de Investigación Ambiental GIA, Universidad Mariana, San Juan de Pasto, Colombia
dc.contributor.contactpersonemail: luisga.lafaurie@umariana.edu.co
dc.contributor.sponsorColciencias and Institución Universitaria Pascual Bravo
dc.contributor.sponsorColombian agency of Science and Technology, (201010038376)
dc.identifier.doi10.1016/j.physb.2024.415786
dc.identifier.instnameUniversidad Mariana
dc.identifier.localPHYBE
dc.identifier.local415786
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85185720107&doi=10.1016%2fj.physb.2024.415786&partnerID=40&md5=379baa3dda90b508989a970baf2d2707
dc.relation.citationvolume679
dc.relation.iscitedby1
dc.relation.referencesLucjan J., Arkadiusz W., Pawel H., Quantum Dots, NanoScience and Technology, (1998)
dc.relation.referencesMasumoto Y., Takagahara T., Semiconductor Quantum Dots, NanoScience and Technology, (2002)
dc.relation.referencesReimann S.M., Manninen M., Electronic structure of quantum dots, Rev. Modern Phys., 74, 4, pp. 1283-1342, (2002)
dc.relation.referencesFomin V.F., Physics of Quantum Rings, (2014)
dc.relation.referencesYu P., Wang Z.M., Quantum Dot Optoelectronic Devices, (2020)
dc.relation.referencesGonzalez P.A., Sanchez J.M., Quantum Dot Molecules, Lecture Notes in Nanoscale Science and Technology, 14, (2014)
dc.relation.referencesWang L., Rastelli A., Kiravittaya S., Benyoucef M., Schmidt O.G., Self-Assembled Quantum Dot Molecules, Adv. Mater., 21, 25-26, pp. 2601-2618, (2009)
dc.relation.referencesBarseghyan M., Baghramyan H., Kirakosyan A., Laroze D., The transition from double to single quantum dot induced by THz laser field, Physica E, 116, (2020)
dc.relation.referencesBarseghyan M., Baghramyan H., Perez L., Laroze D., Magnetic field effect on the electronic states and the intraband optical absorption spectrum of a laser dressed double quantum dot molecule, Chinese J. Phys., 68, pp. 507-513, (2020)
dc.relation.referencesBaghramyan H.M., Barseghyan M.G., Laroze D., Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation, Sci. Rep., 7, 1, (2017)
dc.relation.referencesPlanelles J., Rajadell F., Climente J.I., Royo M., Movilla J.L., Electronic states of laterally coupled quantum rings, J. Phys. Conf. Ser., 61, pp. 936-941, (2007)
dc.relation.referencesBarseghyan M., Mughnetsyan V., Baghramyan H., Ungan F., Perez L., Laroze D., Control of electronic and optical properties of a laser dressed double quantum dot molecule by lateral electric field, Physica E, 126, (2021)
dc.relation.referencesCorredor C.T., Gutierrez W., Molecular states of laterally coupled quantum dots under electric fields, Revista Facultad de Ingeniería Universidad de Antioquia, 71, 71, pp. 17-24, (2014)
dc.relation.referencesDuque C., Correa J., Morales A., Mora-Ramos M., Duque C., Laterally coupled circular quantum dots under applied electric field, Physica E, 77, pp. 34-43, (2016)
dc.relation.referencesSzafran B., Chwiej T., Peeters F.M., Bednarek S., Adamowski J., Partoens B., Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots, Phys. Rev. B, 71, 20, (2005)
dc.relation.referencesKhordad R., Sedehi H.R.R., Thermodynamic properties of a double ring-shaped quantum dot at low and high temperatures, J. Low Temp. Phys., 190, pp. 200-212, (2018)
dc.relation.referencesVicente A.G.J., Remarks on thermodynamic properties of a double ring-shaped quantum dot at low and high temperatures, J. Low Temp. Phys., (2021)
dc.relation.referencesJaliel G., Puddy R.K., Sanchez R., Jordan A.N., Sothmann B., Farrer I., Griffiths J.P., Ritchie D.A., Smith C.G., Experimental realization of a quantum dot energy harvester, Phys. Rev. Lett., 123, 11, (2019)
dc.relation.referencesThierschmann H., Arnold F., Mittermuller M., Maier L., Heyn C., Hansen W., Buhmann H., Molenkamp L.W., Thermal control and generation of charge currents in coupled quantum dots, physica status solidi (a), 213, 3, pp. 582-590, (2016)
dc.relation.referencesZheng Z., Ji H., Yu P., Wang Z., Recent progress towards quantum dot solar cells with enhanced optical absorption, Nanosc. Res. Lett., 11, 1, (2016)
dc.relation.referencesLi A.Z., Wang Z.M., Wu J., Salamo G.J., Holed nanostructures formed by aluminum droplets on a GaAs substrate, Nano Res., 3, 7, pp. 490-495, (2010)
dc.relation.referencesZhang W., Su Z., Gong M., Li C.-F., Guo G.-C., He L., Giant optical anisotropy in cylindrical self-assembled InAs/GaAs quantum rings, Europhys. Lett., 83, 6, (2008)
dc.relation.referencesSuaza Y., Laroze D., Fulla M., Marin J., D<sub>2</sub><sup>+</sup> Molecular complex in non-uniform height quantum ribbon under crossed electric and magnetic fields, Chem. Phys. Lett., 699, pp. 267-274, (2018)
dc.relation.referencesBoyacioglu B., Chatterjee A., Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement, J. Appl. Phys., 112, 8, (2012)
dc.relation.referencesBaghdasaryan D., Hayrapetyan D., Kazaryan E., Sarkisyan H., Thermal and magnetic properties of electron gas in toroidal quantum dot, Physica E, 101, pp. 1-4, (2018)
dc.relation.referencesGumber S., Kumar M., Gambhir M., Mohan M., Jha P.K., Thermal and magnetic properties of cylindrical quantum dot with asymmetric confinement, Can. J. Phys., 93, 11, pp. 1264-1268, (2015)
dc.relation.referencesLafaurie Ponce L.G., Suaza Tabares Y.A., Fulla M.R., Perez Taborda J.A., Avila Bernal A.G., Marin Cadavid J.H., Thermodynamic behaviour of a D<sub>2</sub><sup>+</sup> molecular complex in quantum rings under the combined effects of nonresonant intense laser field radiation and electric field, Phil. Mag., 103, 8, pp. 768-790, (2023)
dc.relation.referencesBetancur F.J., Mikhailov I.D., Marin J.H., Oliveira L.E., Electronic structure of donor-impurity complexes in quantum wells, J. Phys.: Condens. Matter, 10, 32, pp. 7283-7292, (1998)
dc.relation.referencesSuaza Y., Fulla M., Laroze D., Baghramyan H., Marin J., Intense laser field effect on D<sub>2</sub><sup>+</sup> molecular complex localized in semiconductor quantum wells, Chem. Phys. Lett., 730, pp. 384-390, (2019)
dc.relation.referencesKhordad R., Edet C.O., Ikot A.N., Application of Morse potential and improved deformed exponential-type potential (IDEP) model to predict thermodynamics properties of diatomic molecules, Internat. J. Modern Phys. C, 33, 8, (2022)
dc.relation.referencesKhordad R., Sedehi H.R.R., Sharifzadeh M., Susceptibility, entropy and specific heat of quantum rings in monolayer graphene: comparison between different entropy formalisms, J. Comput. Electron., 21, 2, pp. 422-430, (2022)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsArtificial molecule
dc.subject.keywordsCoupled quantum rings
dc.subject.keywordsEntropy
dc.subject.keywordsHeat capacity
dc.subject.keywordsThermal properties
dc.subject.keywordsEntropy
dc.subject.keywordsMagnetic field effects
dc.subject.keywordsMolecules
dc.subject.keywordsNanorings
dc.subject.keywordsArtificial molecule
dc.subject.keywordsCoupled quantum ring
dc.subject.keywordsEigenstates
dc.subject.keywordsExternal fields
dc.subject.keywordsField-effect
dc.subject.keywordsQuantum ring
dc.subject.keywordsSingle electron
dc.subject.keywordsStatic electric fields
dc.subject.keywordsSystematic study
dc.subject.keywordsThermodynamics property
dc.subject.keywordsSpecific heat
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem