dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Andrés Ayala-Cucas H. | |
dc.contributor.author | Mora-Piscal E.A. | |
dc.contributor.author | Mayorca-Torres D. | |
dc.contributor.author | Peluffo-Ordoñez D.H. | |
dc.contributor.author | León-Salas A.J. | |
dc.contributor.editor | Bicharra Garcia A.C. | |
dc.contributor.editor | Ferro M. | |
dc.contributor.editor | Rodríguez Ribón J.C. | |
dc.contributor.other | 17th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2022 | |
dc.date.accessioned | 2024-12-02T20:15:56Z | |
dc.date.available | 2024-12-02T20:15:56Z | |
dc.date.issued | 2022 | |
dc.identifier.isbn | 978-303122418-8 | |
dc.identifier.issn | 3029743 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28992 | |
dc.description.abstract | Cardiac arrhythmias are heartbeat disorders in which the electrical impulses that coordinate the cardiac cycle malfunction. The heart’s electrical activity is recorded using electrocardiography (ECG), a non-invasive method that helps diagnose several cardiovascular diseases. However, interpretation of ECG signals can be difficult due to the presence of noise, the irregularity of the heartbeat, and their nonstationary nature. Hence, the use of computational systems is required to support the diagnosis of cardiac arrhythmias. The main challenge in developing AI-assisted ECG systems is achieving accuracies suitable for application in clinical settings. Therefore, this paper introduces a software tool for classifying cardiac arrhythmias in ECG recordings that uses filtering, segmentation, and feature extraction of the QRS interval. We use the MIT-BIH Arrhythmia Database, which has 48 records of five different types of arrhythmias. We evaluate the data using supervised machine learning techniques such as k-Nearest Neighbors (KNN), Random Forest (RF), Multilayer Perceptron (MLP), and the Naive Bayesian classifier. This paper shows the impact of selecting and employing filtering and feature extraction methods on the performance of supervised machine learning algorithms compared with benchmark approaches. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. | |
dc.description.sponsorship | The authors would like to acknowledge the valuable support given by the SDAS Research Group (https://sdas-group.com/). | |
dc.format | 13 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.source | Lect. Notes Comput. Sci. | |
dc.source | Scopus | |
dc.title | Impact of ECG Signal Preprocessing and Filtering on Arrhythmia Classification Using Machine Learning Techniques | |
datacite.contributor | Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia | |
datacite.contributor | Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco | |
datacite.contributor | Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain | |
datacite.contributor | Andrés Ayala-Cucas H., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia | |
datacite.contributor | Mora-Piscal E.A., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia | |
datacite.contributor | Mayorca-Torres D., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia, Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain | |
datacite.contributor | Peluffo-Ordoñez D.H., Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco | |
datacite.contributor | León-Salas A.J., Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain | |
datacite.contributor | 17th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2022 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | D. Mayorca-Torres | |
dc.contributor.contactperson | Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia | |
dc.contributor.contactperson | email: dago.mayorca.torres@gmail.com | |
dc.contributor.sponsor | Shandong Academy of Sciences, SDAS | |
dc.identifier.doi | 10.1007/978-3-031-22419-5_3 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148688644&doi=10.1007%2f978-3-031-22419-5_3&partnerID=40&md5=593da1dce0f6d6927d7e1dea1dfd7074 | |
dc.relation.citationendpage | 40 | |
dc.relation.citationstartpage | 27 | |
dc.relation.citationvolume | 13788 LNAI | |
dc.relation.conferencedate | 23 November 2022 through 25 November 2022 | |
dc.relation.conferenceplace | Cartagena de Indias | |
dc.relation.iscitedby | 2 | |
dc.relation.references | Luis F., Moncayo G., Libro De La Salud Cardiovascular Del Hospital clínico San Carlos Y La Fundación BBVA, (2009) | |
dc.relation.references | Benjamin E.J., Virani S.S., Callaway C.W., Heart disease and stroke statistics-2018 update: A report from the American heart association, Circulation, 137, 12, (2018) | |
dc.relation.references | BMC Pregnancy and Childbirth, (2014) | |
dc.relation.references | Alqudah A.M., Albadarneh A., Abu-Qasmieh I., Alquran H., Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features, Aust. Phys. Eng. Sci. Med., 42, 1, pp. 149-157, (2019) | |
dc.relation.references | Yang H., Wei Z., Arrhythmia recognition and classification using combined parametric and visual pattern features of ECG morphology, IEEE Access, 8, (2020) | |
dc.relation.references | Ramkumar M., Ganesh Babu C., Vinoth Kumar K., Hepsiba D., Manjunathan A., Sarath Kumar R., ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks, J. Phys. Conf. Ser., 1831, 1, pp. 1-13, (2021) | |
dc.relation.references | BMC Pregnancy and Childbirth, (2014) | |
dc.relation.references | Bhoi A.K., Sherpa K.S., Khandelwal B., Ischemia and arrhythmia classification using time-frequency domain features of QRS complex, Procedia Comput. Sci. 132(Iccids), pp. 606-613, (2018) | |
dc.relation.references | Sahoo S., Kanungo B., Behera S., Sabut S., Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities, J. Int. Meas. Confeder., 108, pp. 55-66, (2017) | |
dc.relation.references | Madan P., Singh V., Singh D.P., Diwakar M., Pant B., Kishor A., A hybrid deep learning approach for ECG-based arrhythmia classification, Bioengineering, 9, 4, pp. 1-13, (2022) | |
dc.relation.references | BMC Pregnancy and Childbirth, (2014) | |
dc.relation.references | Ortega C.D., Ibarra-Piandoy A., Viveros-Villada E., Mayorca-Torres D., Pro-totipo para la adquisición y caracterización de señales electromiográficas superfi-ciales del movimiento de flexión-extensión de los dedos de la mano, Iberian J. Inf. Syst. Technol., pp. 52-65, (2020) | |
dc.relation.references | Sharma P., Dinkar S.K., Gupta D.V., A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals, Neural Comput. Appl., 33, 19, pp. 13123-13143, (2021) | |
dc.relation.references | Elhaj F.A., Salim N., Harris A.R., Swee T.T., Ahmed T., Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals, Comput. Methods Prog. Biomed., 127, pp. 52-63, (2016) | |
dc.relation.references | Costa R., Winkert T., Manhaes A., Teixeira J.P., QRS peaks, P and T waves identification in ECG, Procedia Comput. Sci., 181, pp. 957-964, (2021) | |
dc.relation.references | Kumar C., Kolekar M.H., Cardiac arrhythmia classification using tunable Q-wavelet transform based features and support vector machine classifier, Biomed. Signal Process. Control, 59, (2020) | |
dc.relation.references | Rodriguez-Sotelo J.L., Peluffo-Ordonez D., Cuesta-Frau D., Castellanos-Dominguez G., Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering, Comput. Methods Programs Biomed., 108, 1, pp. 250-261, (2012) | |
dc.relation.references | Khorrami H., Moavenian M., A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification, Expert Syst. Appl., 37, 8, pp. 5751-5757, (2010) | |
dc.relation.references | Ranaware P.N., Deshpande R.A., Detection of arrhythmia based on discrete wavelet transform using artificial neural network and support vector machine, International Conference on Communication and Signal Processing, pp. 1767-1770, (2016) | |
dc.relation.references | Xiang Y., Lin Z., Meng J., Automatic QRS complex detection using two-level convolutional neural network, J. Biomed. Eng. Online, 17, 1, pp. 1-17, (2018) | |
dc.relation.references | Pandey S.K., Janghel R.R., Vani V., Patient specific machine learning models for ECG signal classification, Procedia Comput. Sci., 167, pp. 2181-2190, (2020) | |
dc.relation.references | Ramkumar M.H., Ganesh Babu C., Ganesh Babu K., Hepsiba D., Manjunathan A., Sarath Kumar R., ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks, J. Phys. Conf. Ser., 1831, 1, pp. 1-13, (2021) | |
dc.relation.references | Nascimento N.M.M., Marinho L.B., Peixoto S.A., Do Vale Madeiro J.P., de Albuquerque V.H.C., Filho P.P.R., Heart arrhythmia classification based on statistical moments and structural co-occurrence, Circ. Syst. Signal Process., 39, 2, pp. 631-650, (2019) | |
dc.relation.references | Ye C., Kumar B.V.K.V., Coimbra M.T., Combining general multi-class and specific two-class classifiers for improved customized ECG heartbeat classification, Proceedings-International Conference on Pattern Recognition ICPR, pp. 2428-2431, (2012) | |
dc.relation.references | Ayar M., Sabamoniri S., An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm, Inf. Med. Unlocked, 13, pp. 167-175, (2018) | |
dc.relation.references | Saenz-Cogollo J.F., Agelli M., Investigating feature selection and random forests for inter-patient heartbeat classification, Algorithms, pp. 2-13, (2020) | |
dc.relation.references | Wu M., Lu Y., Yang W., Wong S.Y., A study on arrhythmia via ECG signal classification using the convolutional neural network. Front. Comput, Neurosci, 14, January, pp. 1-10, (2021) | |
dc.relation.references | Mazidi M.H., Eshghi M., Raoufy M.R., Premature ventricular contraction (PVC) detection system based on tunable Q-factor wavelet transform, J. Biomed. Phys. Eng., 12, 1, pp. 61-74, (2022) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Cardiac arrhythmia | |
dc.subject.keywords | Electrocardiogram (ECG) | |
dc.subject.keywords | Feature extraction | |
dc.subject.keywords | Performance measures | |
dc.subject.keywords | Supervised machine learning | |
dc.subject.keywords | Benchmarking | |
dc.subject.keywords | Biomedical signal processing | |
dc.subject.keywords | Diseases | |
dc.subject.keywords | Extraction | |
dc.subject.keywords | Feature extraction | |
dc.subject.keywords | Heart | |
dc.subject.keywords | Learning algorithms | |
dc.subject.keywords | Learning systems | |
dc.subject.keywords | Nearest neighbor search | |
dc.subject.keywords | Noninvasive medical procedures | |
dc.subject.keywords | Supervised learning | |
dc.subject.keywords | Arrhythmia classification | |
dc.subject.keywords | Cardiac arrhythmia | |
dc.subject.keywords | Electrocardiogram | |
dc.subject.keywords | Electrocardiogram signal | |
dc.subject.keywords | Features extraction | |
dc.subject.keywords | Machine learning techniques | |
dc.subject.keywords | Performance measure | |
dc.subject.keywords | Signal filtering | |
dc.subject.keywords | Signal preprocessing | |
dc.subject.keywords | Supervised machine learning | |
dc.subject.keywords | Electrocardiograms | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia | |