Show simple item record

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorAndrés Ayala-Cucas H.
dc.contributor.authorMora-Piscal E.A.
dc.contributor.authorMayorca-Torres D.
dc.contributor.authorPeluffo-Ordoñez D.H.
dc.contributor.authorLeón-Salas A.J.
dc.contributor.editorBicharra Garcia A.C.
dc.contributor.editorFerro M.
dc.contributor.editorRodríguez Ribón J.C.
dc.contributor.other17th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2022
dc.date.accessioned2024-12-02T20:15:56Z
dc.date.available2024-12-02T20:15:56Z
dc.date.issued2022
dc.identifier.isbn978-303122418-8
dc.identifier.issn3029743
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28992
dc.description.abstractCardiac arrhythmias are heartbeat disorders in which the electrical impulses that coordinate the cardiac cycle malfunction. The heart’s electrical activity is recorded using electrocardiography (ECG), a non-invasive method that helps diagnose several cardiovascular diseases. However, interpretation of ECG signals can be difficult due to the presence of noise, the irregularity of the heartbeat, and their nonstationary nature. Hence, the use of computational systems is required to support the diagnosis of cardiac arrhythmias. The main challenge in developing AI-assisted ECG systems is achieving accuracies suitable for application in clinical settings. Therefore, this paper introduces a software tool for classifying cardiac arrhythmias in ECG recordings that uses filtering, segmentation, and feature extraction of the QRS interval. We use the MIT-BIH Arrhythmia Database, which has 48 records of five different types of arrhythmias. We evaluate the data using supervised machine learning techniques such as k-Nearest Neighbors (KNN), Random Forest (RF), Multilayer Perceptron (MLP), and the Naive Bayesian classifier. This paper shows the impact of selecting and employing filtering and feature extraction methods on the performance of supervised machine learning algorithms compared with benchmark approaches. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.description.sponsorshipThe authors would like to acknowledge the valuable support given by the SDAS Research Group (https://sdas-group.com/).
dc.format13
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceLect. Notes Comput. Sci.
dc.sourceScopus
dc.titleImpact of ECG Signal Preprocessing and Filtering on Arrhythmia Classification Using Machine Learning Techniques
datacite.contributorUniversidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia
datacite.contributorModeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco
datacite.contributorDepartamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
datacite.contributorAndrés Ayala-Cucas H., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia
datacite.contributorMora-Piscal E.A., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia
datacite.contributorMayorca-Torres D., Universidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia, Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
datacite.contributorPeluffo-Ordoñez D.H., Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco
datacite.contributorLeón-Salas A.J., Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
datacite.contributor17th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2022
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonD. Mayorca-Torres
dc.contributor.contactpersonUniversidad Mariana, Grupo de investigación de Ingeniería Mecatrónica, Pasto, Colombia
dc.contributor.contactpersonemail: dago.mayorca.torres@gmail.com
dc.contributor.sponsorShandong Academy of Sciences, SDAS
dc.identifier.doi10.1007/978-3-031-22419-5_3
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85148688644&doi=10.1007%2f978-3-031-22419-5_3&partnerID=40&md5=593da1dce0f6d6927d7e1dea1dfd7074
dc.relation.citationendpage40
dc.relation.citationstartpage27
dc.relation.citationvolume13788 LNAI
dc.relation.conferencedate23 November 2022 through 25 November 2022
dc.relation.conferenceplaceCartagena de Indias
dc.relation.iscitedby2
dc.relation.referencesLuis F., Moncayo G., Libro De La Salud Cardiovascular Del Hospital clínico San Carlos Y La Fundación BBVA, (2009)
dc.relation.referencesBenjamin E.J., Virani S.S., Callaway C.W., Heart disease and stroke statistics-2018 update: A report from the American heart association, Circulation, 137, 12, (2018)
dc.relation.referencesBMC Pregnancy and Childbirth, (2014)
dc.relation.referencesAlqudah A.M., Albadarneh A., Abu-Qasmieh I., Alquran H., Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features, Aust. Phys. Eng. Sci. Med., 42, 1, pp. 149-157, (2019)
dc.relation.referencesYang H., Wei Z., Arrhythmia recognition and classification using combined parametric and visual pattern features of ECG morphology, IEEE Access, 8, (2020)
dc.relation.referencesRamkumar M., Ganesh Babu C., Vinoth Kumar K., Hepsiba D., Manjunathan A., Sarath Kumar R., ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks, J. Phys. Conf. Ser., 1831, 1, pp. 1-13, (2021)
dc.relation.referencesBMC Pregnancy and Childbirth, (2014)
dc.relation.referencesBhoi A.K., Sherpa K.S., Khandelwal B., Ischemia and arrhythmia classification using time-frequency domain features of QRS complex, Procedia Comput. Sci. 132(Iccids), pp. 606-613, (2018)
dc.relation.referencesSahoo S., Kanungo B., Behera S., Sabut S., Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities, J. Int. Meas. Confeder., 108, pp. 55-66, (2017)
dc.relation.referencesMadan P., Singh V., Singh D.P., Diwakar M., Pant B., Kishor A., A hybrid deep learning approach for ECG-based arrhythmia classification, Bioengineering, 9, 4, pp. 1-13, (2022)
dc.relation.referencesBMC Pregnancy and Childbirth, (2014)
dc.relation.referencesOrtega C.D., Ibarra-Piandoy A., Viveros-Villada E., Mayorca-Torres D., Pro-totipo para la adquisición y caracterización de señales electromiográficas superfi-ciales del movimiento de flexión-extensión de los dedos de la mano, Iberian J. Inf. Syst. Technol., pp. 52-65, (2020)
dc.relation.referencesSharma P., Dinkar S.K., Gupta D.V., A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals, Neural Comput. Appl., 33, 19, pp. 13123-13143, (2021)
dc.relation.referencesElhaj F.A., Salim N., Harris A.R., Swee T.T., Ahmed T., Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals, Comput. Methods Prog. Biomed., 127, pp. 52-63, (2016)
dc.relation.referencesCosta R., Winkert T., Manhaes A., Teixeira J.P., QRS peaks, P and T waves identification in ECG, Procedia Comput. Sci., 181, pp. 957-964, (2021)
dc.relation.referencesKumar C., Kolekar M.H., Cardiac arrhythmia classification using tunable Q-wavelet transform based features and support vector machine classifier, Biomed. Signal Process. Control, 59, (2020)
dc.relation.referencesRodriguez-Sotelo J.L., Peluffo-Ordonez D., Cuesta-Frau D., Castellanos-Dominguez G., Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering, Comput. Methods Programs Biomed., 108, 1, pp. 250-261, (2012)
dc.relation.referencesKhorrami H., Moavenian M., A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification, Expert Syst. Appl., 37, 8, pp. 5751-5757, (2010)
dc.relation.referencesRanaware P.N., Deshpande R.A., Detection of arrhythmia based on discrete wavelet transform using artificial neural network and support vector machine, International Conference on Communication and Signal Processing, pp. 1767-1770, (2016)
dc.relation.referencesXiang Y., Lin Z., Meng J., Automatic QRS complex detection using two-level convolutional neural network, J. Biomed. Eng. Online, 17, 1, pp. 1-17, (2018)
dc.relation.referencesPandey S.K., Janghel R.R., Vani V., Patient specific machine learning models for ECG signal classification, Procedia Comput. Sci., 167, pp. 2181-2190, (2020)
dc.relation.referencesRamkumar M.H., Ganesh Babu C., Ganesh Babu K., Hepsiba D., Manjunathan A., Sarath Kumar R., ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks, J. Phys. Conf. Ser., 1831, 1, pp. 1-13, (2021)
dc.relation.referencesNascimento N.M.M., Marinho L.B., Peixoto S.A., Do Vale Madeiro J.P., de Albuquerque V.H.C., Filho P.P.R., Heart arrhythmia classification based on statistical moments and structural co-occurrence, Circ. Syst. Signal Process., 39, 2, pp. 631-650, (2019)
dc.relation.referencesYe C., Kumar B.V.K.V., Coimbra M.T., Combining general multi-class and specific two-class classifiers for improved customized ECG heartbeat classification, Proceedings-International Conference on Pattern Recognition ICPR, pp. 2428-2431, (2012)
dc.relation.referencesAyar M., Sabamoniri S., An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm, Inf. Med. Unlocked, 13, pp. 167-175, (2018)
dc.relation.referencesSaenz-Cogollo J.F., Agelli M., Investigating feature selection and random forests for inter-patient heartbeat classification, Algorithms, pp. 2-13, (2020)
dc.relation.referencesWu M., Lu Y., Yang W., Wong S.Y., A study on arrhythmia via ECG signal classification using the convolutional neural network. Front. Comput, Neurosci, 14, January, pp. 1-10, (2021)
dc.relation.referencesMazidi M.H., Eshghi M., Raoufy M.R., Premature ventricular contraction (PVC) detection system based on tunable Q-factor wavelet transform, J. Biomed. Phys. Eng., 12, 1, pp. 61-74, (2022)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsCardiac arrhythmia
dc.subject.keywordsElectrocardiogram (ECG)
dc.subject.keywordsFeature extraction
dc.subject.keywordsPerformance measures
dc.subject.keywordsSupervised machine learning
dc.subject.keywordsBenchmarking
dc.subject.keywordsBiomedical signal processing
dc.subject.keywordsDiseases
dc.subject.keywordsExtraction
dc.subject.keywordsFeature extraction
dc.subject.keywordsHeart
dc.subject.keywordsLearning algorithms
dc.subject.keywordsLearning systems
dc.subject.keywordsNearest neighbor search
dc.subject.keywordsNoninvasive medical procedures
dc.subject.keywordsSupervised learning
dc.subject.keywordsArrhythmia classification
dc.subject.keywordsCardiac arrhythmia
dc.subject.keywordsElectrocardiogram
dc.subject.keywordsElectrocardiogram signal
dc.subject.keywordsFeatures extraction
dc.subject.keywordsMachine learning techniques
dc.subject.keywordsPerformance measure
dc.subject.keywordsSignal filtering
dc.subject.keywordsSignal preprocessing
dc.subject.keywordsSupervised machine learning
dc.subject.keywordsElectrocardiograms
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record