Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorMoraes A.M.
dc.contributor.authorSouza Lima J.
dc.contributor.authorAlexandre B.R.
dc.contributor.authorAyala-Burbano P.A.
dc.contributor.authorDe Freitas P.D.
dc.contributor.authorRuiz-Miranda C.R.
dc.contributor.authorMiyaki C.Y.
dc.date.accessioned2024-12-02T20:15:55Z
dc.date.available2024-12-02T20:15:55Z
dc.date.issued2023
dc.identifier.isbn978-303134854-9
dc.identifier.isbn978-303134853-2
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28990
dc.description.abstractMost neotropical species are threatened by the reduction and fragmentation of their distribution range. Genetic management is an important conservation strategy for species that have small populations and little or no inter-population gene flow. Particularly, in situ genetic management of reduced and fragmented populations should be applied (i) to increase the population size and reduce loss of genetic diversity and the deleterious effects of inbreeding, and (ii) to reestablish gene flow among isolated groups. Furthermore, the importance of management measures for genetic conservation cannot be ignored given the actual context of climate change. Here, we discuss when and how translocation and reintroduction are useful strategies for the conservation of threatened species. Therefore, these actions should be done in combination with other strategies, such as habitat restoration, to guarantee a minimum population size and gene flow among the populations after human-mediated dispersal. Finally, we discuss what we learned from the genetic management of neotropical species such as lion tamarins, Spix’s macaws, and plants. Based on these programs, we highlight recommendations for planning conservation management within the neotropical forests. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023, Corrected Publication 2023.
dc.format22
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer International Publishing
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceConservation Genetics in the Neotropics
dc.sourceConservation Genetics in the Neotropics
dc.sourceScopus
dc.titleGenetic Management Applied to Conservation of Reduced and Fragmented Wild Populations
datacite.contributorLaboratório de Ecologia Espacial e Conservação, Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), SP, Rio Claro, Brazil
datacite.contributorLaboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), RJ, Campos dos Goytacazes, Brazil
datacite.contributorDepartment of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
datacite.contributorInstituto de Geociências, Universidade Federal Fluminense (UFF), RJ, Niterói, Brazil
datacite.contributorLaboratório de Biodiversidade Molecular e Conservação, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), SP, São Carlos, Brazil
datacite.contributorFacultad de Ciencias de la Salud, Universidad Mariana, San Juan de Pasto, Nariño, Colombia
datacite.contributorLaboratório de Biodiversidade Molecular e Conservação, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), SP, São Carlos, Brazil
datacite.contributorLaboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), RJ, Campos dos Goytacazes, Brazil
datacite.contributorDepartamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo (USP), SP, São Paulo, Brazil
datacite.contributorMoraes A.M., Laboratório de Ecologia Espacial e Conservação, Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), SP, Rio Claro, Brazil, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), RJ, Campos dos Goytacazes, Brazil
datacite.contributorSouza Lima J., Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
datacite.contributorAlexandre B.R., Instituto de Geociências, Universidade Federal Fluminense (UFF), RJ, Niterói, Brazil
datacite.contributorAyala-Burbano P.A., Laboratório de Biodiversidade Molecular e Conservação, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), SP, São Carlos, Brazil, Facultad de Ciencias de la Salud, Universidad Mariana, San Juan de Pasto, Nariño, Colombia
datacite.contributorDe Freitas P.D., Laboratório de Biodiversidade Molecular e Conservação, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), SP, São Carlos, Brazil
datacite.contributorRuiz-Miranda C.R., Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), RJ, Campos dos Goytacazes, Brazil
datacite.contributorMiyaki C.Y., Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo (USP), SP, São Paulo, Brazil
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_3248
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.identifier.doi10.1007/978-3-031-34854-9_10
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85191610495&doi=10.1007%2f978-3-031-34854-9_10&partnerID=40&md5=13b160ca5e990fbd146c4dfeb00f94b1
dc.relation.citationendpage249
dc.relation.citationstartpage227
dc.relation.citationvolume3
dc.relation.iscitedby3
dc.relation.referencesAdriaensen F., Chardon J.P., De Blust G., Et al., The application of “least-cost” modelling as a functional landscape model, Landsc Urban Plan, 64, pp. 233-247, (2003)
dc.relation.referencesAguilar R., Quesada M., Ashworth L., Et al., Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches, Mol Ecol, 17, 24, pp. 5177-5188, (2008)
dc.relation.referencesAguirre-Gutierrez J., Malhi Y., Lewis S., Et al., Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetichomogeneity, Nat Commun, 11, 1, pp. 1-10, (2020)
dc.relation.referencesAntiqueira L.M.O.R., Kageyama P.Y., Genetic diversity of four populations of Qualea grandiflora Mart, Fragments of the Brazilian Cerrado, 142, pp. 11-21, (2014)
dc.relation.referencesArroyo-Lambaer D., Chapman H., Hale M., Blackburn D., Conservation genetics of two threatened frogs from the Mambilla highlands, Nigeria, Plos One, 13, 8, (2018)
dc.relation.referencesArroyo-Rodriguez V., Mandujano S., Forest fragmentation modifies habitat quality for Alouatta palliata, Int J Primatol, 27, 4, pp. 1079-1096, (2006)
dc.relation.referencesAscensao F., Niebuhr B.B., Moraes A.M., Et al., End of the line for the golden lion tamarin? A single road threatens 30 years of conservation efforts, Conserv Sci Pract, 1, 9, pp. 1-7, (2019)
dc.relation.referencesAyala-Burbano P.A., Caldano L., Galetti P.M., Et al., Genetic assessments for the endangered black lion tamarins Leontopithecus chrysopygus (Mikan, 1823), Callitrichidae, primates, Am J Primatol, 79, pp. 1-13, (2017)
dc.relation.referencesAyala-Burbano P.A., Galetti P.M., Wormell D., Et al., Studbook and molecular analyses for the endangered black-lion-tamarin
dc.relation.referencesan integrative approach for assessing genetic diversity and driving management in captivity, Sci Adv, 10, 6781, pp. 1-11, (2020)
dc.relation.referencesBaguette M., Van Dyck H., Landscape connectivity and animal behavior: Functional grain as a key determinant for dispersal, Landsc Ecol, 22, pp. 1117-1129, (2007)
dc.relation.referencesBaguette M., Blanchet S., Legrand D., Et al., Individual dispersal, landscape connectivity and ecological networks, Biol Rev, 88, 2, pp. 310-326, (2013)
dc.relation.referencesBallou J.D., Earnhardt J., Thompson S., Materx: Genetic Management Software, (2001)
dc.relation.referencesBampi M.I., Da-Re M., Recovery program for the Spix’s macaw (Cyanopsitta spixii): Conservation in the wild and reintroduction program, Proceedings of the III International Parrot Convention, 1994, pp. 188-194, (1994)
dc.relation.referencesBarros Y.M., De Soye Y., Miyaki C.Y., Et al., Plano De Ação Nacional Para a Conservação Da Ararinha-Azul: Cyanopsitta Spixii, (2012)
dc.relation.referencesBellard C., Bertelsmeier C., Leadley P., Et al., Impacts of climate change on the future of biodiversity, Ecol Lett, 15, pp. 365-377, (2012)
dc.relation.referencesBender D.J., Contreras T.A., Fahrig L., Habitat loss and population decline: A meta-analysis of the patch size effect, Ecology, 79, 2, pp. 517-533, (1998)
dc.relation.referencesBenz R.A., Boyce M.S., Thurfjell H., Et al., Dispersal ecology informs design of large-scale wildlife corridors, Plos One, 11, 9, (2016)
dc.relation.referencesCyanopsitta spixii, The IUCN Red List of Threatened Species 2019: E.T22685533a153022606, (2019)
dc.relation.referencesBrando P.M., Balch J.K., Nepstad D.C., Et al., Abrupt increases in Amazonian tree mortality due to drought–fire interactions, Proc Natl Acad Sci, 111, 17, pp. 6347-6352, (2014)
dc.relation.referencesBrekke P., Bennett P.M., Santure A.W., Ewen J.G., High genetic diversity in the remnant Island population of hihi and the genetic consequences of re-introduction, Mol Ecol, 20, pp. 29-45, (2011)
dc.relation.referencesBrodie J., Post E., Laurance W.F., Climate change and tropical biodiversity: A new focus, Trends Ecol Evol, 27, pp. 145-150, (2012)
dc.relation.referencesBrooks T., Mittermeier R., Mittermeier C., Et al., Habitat loss and extinction in the hotspots of biodiversity, Conserv Biol, 16, pp. 909-923, (2002)
dc.relation.referencesBrown J.L., Weber J.J., Alvarado-Serrano D.F., Et al., Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes, Am J Bot, 103, pp. 1-11, (2016)
dc.relation.referencesCampos Telles M.P., Diniz-Filho J.A.F., Bastos R.P., Et al., Landscape genetics of Physalaemus cuvieri in Brazilian Cerrado: Correspondence between population structure and patterns of human occupation and habitat loss, Biol Conserv, 139, 1-2, pp. 37-46, (2007)
dc.relation.referencesCaparroz R., Miyaki C.Y., Bampi M.I., Wajntal A., Analysis of the genetic variability in a sample of the remaining group of Spix’s macaw (Cyanopsitta spixii, Psittaciformes: Aves) by DNA fingerprinting, Biol Conserv, 99, pp. 307-311, (2001)
dc.relation.referencesCastilho C.S., Marins-Sa L.G., Benedet R.C., Freitas T.O., Landscape genetics of mountain lions (Puma concolor) in southern Brazil, Mamm Biol, 76, pp. 476-483, (2011)
dc.relation.referencesChacon-Vargas K., Garcia-Merchan V.H., Sanin M.J., From keystone species to conservation: Conservation genetics of wax palm Ceroxylon quindiuense in the largest wild populations of Colombia and selected neighboring ex situ plant collections, Biodivers Conserv, 29, pp. 283-302, (2020)
dc.relation.referencesCollar N.J., Gonzaga L.P., Krabbe N., Et al., Spix’s macaw Cyanopsitta spixii, Threatened Birds of the Americas. the ICBP/IUCN Red Data Book, 3, pp. 266-281, (1992)
dc.relation.referencesCollins M Knutti R., Arblaster J., Stocker T.F., Qin D., Plattner G.K., Et al., Long-term climate change: Projections, commitments and irreversibility, Climate Change 2013: The Physical Science Basis, (2013)
dc.relation.referencesCorlett R.T., Climate change in the tropics: The end of the world as we know it?, Biol Conserv, 151, pp. 22-25, (2012)
dc.relation.referencesCosta C.P., Da Silva Machado C.A., Francoy T.M., Assessment of genetic diversity and population structure of Eulaema nigrita (hymenoptera: Apidae: Euglossini) as a factor of habitat type in Brazilian Atlantic Forest fragments, The Canadian Entomologist, 153, 4, pp. 1-15, (2021)
dc.relation.referencesCote J., Bestion E., Jacob S., Et al., Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes, Ecography, 40, 1, pp. 56-73, (2017)
dc.relation.referencesCovarrubias S., Gonzalez C., Gutierrez-Rodriguez C., Effects of natural and anthropogenic features on functional connectivity of anurans: A review of landscape genetics studies in temperate, subtropical and tropical species, J Zool, 313, 3, pp. 159-171, (2021)
dc.relation.referencesDa Alexandre B.R., Modelagem Espacial No Apoio a estratégias De conservação: Combinando Adequabilidade Ambiental E Conectividade Da Paisagem, (2018)
dc.relation.referencesDawson T.P., Jackson S.T., House J.I., Et al., Beyond predictions: Biodiversity conservation in a changing climate, Science, 332, pp. 53-58, (2011)
dc.relation.referencesDiniz-Filho J.A.F., Barbosa A.C.O.F., Chaves J.L., Et al., Overcoming the worst of both worlds: Integrating climate change and habitat loss into spatial conservation planning of genetic diversity in the Brazilian Cerrado, Biodivers Conserv, 29, pp. 1555-1570, (2020)
dc.relation.referencesDixo M., Metzger J.P., Morgante J.S., Zamudio K.R., Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic coastal Forest, Biol Conserv, 142, 8, pp. 1560-1569, (2009)
dc.relation.referencesEdmands S., Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management, Mol Ecol, 16, pp. 463-475, (2007)
dc.relation.referencesEterovick P.C., Sloss B.L., Scalzo J.A., Alford R.A., Isolated frogs in a crowded world: Effects of human-caused habitat loss on frog heterozygosity and fluctuating asymmetry, Biol Conserv, 195, pp. 52-59, (2016)
dc.relation.referencesFadrique B., Baez S., Duque A., Et al., Widespread but heterogeneous responses of Andean forests to climate change, Nature, 564, 7735, pp. 207-212, (2018)
dc.relation.referencesFernandez B.J., Toro M.A., The use of mathematical programming to control inbreeding in selection schemes, J Anim Breed Genet, 116, 6, pp. 447-466, (1999)
dc.relation.referencesFerrie G.M., Cohen O.R., Schutz P., Et al., Identifying parentage using molecular markers: Improving accuracy of studbook records for a captive flock of marabou storks (Leptoptilus crumeniferus), Zoo Biol, 32, 5, pp. 556-564, (2013)
dc.relation.referencesFienieg E., Galbusera P., The use and integration of molecular DNA information in conservation breeding programs: A review, J Zoo Aquarium Res, 1, 2, pp. 44-51, (2013)
dc.relation.referencesFischer J., Lindenmayer D.B., An assessment of the published results of animal relocations, Biol Conserv, 96, pp. 1-11, (2000)
dc.relation.referencesFrankham R., Challenges and opportunities of genetic approaches to biological conservation, Biol Conserv, 143, pp. 1919-1927, (2010)
dc.relation.referencesFrankham R., Briscoe D.A., Ballou J.D., Introduction to Conservation Genetics, (2002)
dc.relation.referencesFranklin I.R., Frankham R., How large must populations be to retain evolutionary potential?, Anim Conserv, 1, pp. 69-70, (1998)
dc.relation.referencesFreitas L.A., Diversidade E Estrutura genética De populações De mico-leão-dourado, (2012)
dc.relation.referencesGanzhorn S.M., Perez-Sweeney B., Thomas W.W., Et al., Effects of fragmentation on density and population genetics of a threatened tree species in a biodiversity hotspot, Endanger Species Res, 26, 3, pp. 189-199, (2015)
dc.relation.referencesGarcia-Dorado A., Caballero A., Neutral genetic diversity as a useful tool for conservation biology, Conserv Gen, 22, pp. 541-545, (2021)
dc.relation.referencesGarrido-Garduno T., Tellez-Valdes O., Manel S., Vazquez-Dominguez E., Role of habitat heterogeneity and landscape connectivity in shaping gene flow and spatial population structure of a dominant rodent species in a tropical dry forest, J Zool, 298, 4, pp. 293-302, (2016)
dc.relation.referencesGautschi B., Jacob G., Negro J.J., Et al., Analysis of relatedness and determination of the source of founders in the captive bearded vulture, Gypaetus barbatus, population, Conserv Genet, 4, 4, pp. 479-490, (2003)
dc.relation.referencesGoodwin B.J., Is landscape connectivity a dependent or independent variable?, Landsc Ecol, 18, 7, pp. 687-699, (2003)
dc.relation.referencesGoyache F., Gutierrez J.P., Fernandez I., Et al., Using pedigree information to monitor genetic variability of endangered populations: The Xalda sheep breed of Asturias as an example, J Anim Breed Genet, 120, 2, pp. 95-105, (2003)
dc.relation.referencesGrativol A.D., Ballou J.D., Fleischer R.C., Microsatellite variation within and among recently fragmented populations of golden lion tamarins (Leontopithecus rosalia), Conserv Genet, 2, pp. 1-9, (2001)
dc.relation.referencesGriffith B., Scott J., Carpenter J., Reed C., Translocation as a species conservation tool: Status an strategy, Science, 245, pp. 477-480, (1989)
dc.relation.referencesHabel J.C., Zachos F.E., Dapporto L., Et al., Population genetics revisited – towards a multidisciplinary research field, Biol J Linn Soc, 115, pp. 1-12, (2015)
dc.relation.referencesHenkel J.R., Jones K.L., Hereford S.G., Et al., Integrating microsatellite and pedigree analyses to facilitate the captive management of the endangered Mississippi sandhill crane (Grus canadensis pulla), Zoo Biol, 31, 3, pp. 322-335, (2012)
dc.relation.referencesHoban S., Bruford M., Jackson J.D.'.U., Et al., Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved, Biol Conserv, 248, (2020)
dc.relation.references(2021)
dc.relation.referencesMasson-Delmotte V.P., Zhai A., Pirani A., Et al., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to The Sixth Assessment Report of The Intergovernmental Panel on Climate Change, 3, (2021)
dc.relation.referencesIto H., Ogden R., Langenhorst T., Inoue-Murayama M., Contrasting results from molecular and pedigree-based population diversity measures in captive zebra highlight challenges facing genetic management of zoo populations, Zoo Biol, 36, 1, pp. 87-94, (2017)
dc.relation.referencesIvy J.A., Miller A., Lacy R.C., Dewoody J.A., Methods and prospects for using molecular data in captive breeding programs: An empirical example using Parma wallabies (Macropus Parma), J Hered, 100, 4, pp. 441-454, (2009)
dc.relation.referencesJacob S., Laurent E., Morel-Journel T., Schtickzelle N., Fragmentation and the context-dependence of dispersal syndromes: Matrix harshness modifies resident-disperser phenotypic differences in microcosms, Oikos, 129, 2, pp. 158-169, (2020)
dc.relation.referencesJimenez B.O., Li K., Tucker P.K., Landscape drivers of connectivity for a forest rodent in a coffee agroecosystem, Lands Ecol, 35, pp. 1249-1261, (2020)
dc.relation.referencesJuniper T., Spix’s Macaw: The Race to save The World’s Rarest Bird, (2002)
dc.relation.referencesJuniper T., Yamashita C., The conservation of Spix’s macaw, Oryx, 24, 4, pp. 224-228, (1990)
dc.relation.referencesJuniper T., Yamashita C., The habitat and status of Spix’s macaw Cyanopsitta spixii, Bird Conserv Int, 1, pp. 1-9, (1991)
dc.relation.referencesKeenan R.J., Climate change impacts and adaptation in forest management: A review, Ann for Sci, 72, pp. 145-167, (2015)
dc.relation.referencesKhimoun A., Peterman W., Eraud C., Et al., Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird, Mol Ecol, 26, 19, pp. 4906-4919, (2017)
dc.relation.referencesKierulff M.C.M., Rylands A.B., Census and distribution of the golden lion tamarin (Leontopithecus rosalia), Am J Primatol, 59, pp. 29-44, (2003)
dc.relation.referencesKierulff M.C.M., Oliveira P.P., Beck B.B., Martins A., Kleiman D.G., Rylands A.B., Reintroduction and translocation as conservation tools for golden lion tamarins, Lion Tamarins: Biology and Conservation, 3, pp. 271-282, (2002)
dc.relation.referencesKierulff M.C.M., Rylands A.B., De Oliveira M.M., Leontopithecus rosalia, IUCN Red List Threat, (2008)
dc.relation.referencesKierulff M.C.M., Ruiz-Miranda C.R., Oliveira-Procopio P., Et al., The Golden lion tamarin Leontopithecus rosalia: A conservation success story, Int Zoo Yearb, 46, pp. 36-45, (2012)
dc.relation.referencesKirk H., Freeland J.R., Applications and implications of neutral versus non-neutral markers in molecular ecology, Int J Mol Sci, 12, 6, pp. 3966-3988, (2011)
dc.relation.referencesKleiman D., Reintroduction of captive mammals for conservation, Bioscience, 39, pp. 152-161, (1989)
dc.relation.referencesKleiman D.G., Beck B.B., Dietz J.M., Benirhke K., Et al., Conservation program for the golden lion tamarin: Captive research and management, ecological studies, educational strategies, and reintroduction, Primates, 3, pp. 959-979, (1986)
dc.relation.referencesKlink C.A., Machado R.B., Conservation of the Brazilian Cerrado, Conserv Biol, 19, pp. 707-713, (2005)
dc.relation.referencesLacy R., Ballou J.D., Princee F., Ballou J.D., Gilpen M., Foose T., Et al., Pedigree analysis for population management, Population Management for Survival and Recovery, 3, pp. 57-75, (1995)
dc.relation.referencesLacy R., Ballou J.D., Pollak J., PMx: Software package for demographic and genetic analysis and management of pedigreed populations, Methods Ecol Evol, 3, 2, pp. 433-437, (2012)
dc.relation.referencesLima J.S., Ballesteros-Mejia L., Lima-Ribeiro M.S., Collevatti R.G., Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species, Glob Change Biol, 1, pp. 1-12, (2017)
dc.relation.referencesLindenmayer D.B., Fischer J., Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis, (2006)
dc.relation.referencesLopez-Cortegano E., Perez-Figueroa A., Caballero A., Metapop 2: Re – implementation of software for the analysis and management of subdivided populations using gene and allelic diversity, Mol Ecol Resour, 19, pp. 1095-1100, (2019)
dc.relation.referencesLoyola R.D., Kubota U., Da Fonseca G.A.B., Lewinsohn T.M., Key Neotropical ecoregions for conservation of terrestrial vertebrates, Biodivers Conserv, 3, (2017)
dc.relation.referencesMalhi Y., Roberts J.T., Betts R.A., Et al., Climate change, deforestation, and the fate of the Amazon, Science, 319, pp. 168-172, (2008)
dc.relation.referencesManel S., Holderegger R., Ten years of landscape genetics, Trends Ecol Evol, 28, pp. 614-621, (2013)
dc.relation.referencesMares M.A., Conservation in South America: Problems, consequences, and solutions, Science, 80, 233, pp. 734-739, (1986)
dc.relation.referencesMartins M.M., Nascimento A.T.A., Nali C., Et al., Genetic analysis reveals population structuring and a bottleneck in the black-faced lion tamarin (Leontopithecus caissara), Folia Primatol, 82, pp. 197-211, (2012)
dc.relation.referencesMaruyama T., Fuerst P.A., Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck, Genetics, 111, pp. 675-689, (1985)
dc.relation.referencesMcGreevy T.J., Dabek L., Husband T., Genetic evaluation of the Association of Zoos and Aquariums Matschie’s tree kangaroo (Dendrolagus matschiei) captive breeding program, Zoo Biol, 30, 6, pp. 636-646, (2011)
dc.relation.referencesMcGuire J.L., Lawler J.J., McRae B.H., Et al., Achieving climate connectivity in a fragmented landscape, Proc Natl Acad Sci, 113, 26, pp. 7195-7200, (2016)
dc.relation.referencesMichaelides S., Cole N., Funk S.M., Translocation retains genetic diversity of a threatened endemic reptile in Mauritius, Conserv Genet, 16, pp. 661-672, (2015)
dc.relation.referencesMickelberg J.L., Understanding and Managing Isolation in a Fragmented Population of Golden Lion Tamarins, Leontopithecus Rosalia. Phd Dissertation, (2011)
dc.relation.referencesMonteiro R.S., A contribuição Da genética Para a conservação Da Ararinha-Azul (Cyanopsitta Spixii), (2015)
dc.relation.referencesMonteiro W.P., Veiga J.C., Silva A.R., Et al., Everything you always wanted to know about gene flow in tropical landscapes (but were afraid to ask), Peerj, 3, (2019)
dc.relation.referencesMoraes A.M., Ruiz-Miranda C.R., Ribeiro M.C., Et al., Temporal genetic dynamics of reintroduced and translocated populations of the endangered golden lion tamarin (Leontopithecus rosalia), Conserv Genet, 18, pp. 995-1009, (2017)
dc.relation.referencesMoraes A.M., Grativol A.D., De Vleeschouwer K.M., Et al., Population genetic structure of an endangered endemic primate (Leontopithecus chrysomelas) in a highly fragmented Atlantic coastal rainforest, Folia Primatol, (2018)
dc.relation.referencesMoraes A.M., Ruiz-Miranda C.R., Galetti P.M., Et al., Landscape resistance influences effective dispersal of endangered golden lion tamarins within the Atlantic Forest, Biol Conserv, 224, pp. 178-187, (2018)
dc.relation.referencesMoritz C., Conservation units and translocations: Strategies for conserving evolutionary processes, Hereditas, 130, pp. 217-228, (1999)
dc.relation.referencesMyers N., Mittermeier R.A., Mittermeier C.G., Et al., Biodiversity hotspots for conservation priorities, Nature, 403, pp. 853-858, (2000)
dc.relation.referencesNiebuhr B., Wosniack M., Santos M., Et al., Survival in patchy landscapes: The interplay between dispersal, habitat loss and fragmentation, Sci Rep, 5, (2015)
dc.relation.referencesNowakowski A.J., Veiman-Echeverria M., Kurz D.J., Donnelly M.A., Evaluating connectivity for tropical amphibians using empirically derived resistance surfaces, Ecol Appl, 25, 4, pp. 928-942, (2015)
dc.relation.referencesParker K.A., Translocations: Providing outcomes for wildlife, resource managers, scientists, and the human community, Restor Ecol, 16, pp. 204-209, (2008)
dc.relation.referencesPresti F.T., Caracterização da Variabilidade Genética em Espécies de Psitacídeos Ameaçados. Master’s Degree Thesis, Instituto De Biociências, (2006)
dc.relation.referencesPrincee F.P.G., Exploring studbooks for wildlife management and conservation, Topics in Biodiversity and Conservation, 3, (2016)
dc.relation.referencesRabinowitz A., Zeller K.A., A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca, Biol Conserv, 143, 4, pp. 939-945, (2010)
dc.relation.referencesRafferty N.E., Ives A.R., Effects of experimental shifts in flowering phenology on plant–pollinator interactions, Ecol Lett, 14, pp. 69-74, (2010)
dc.relation.referencesRalls K., Ballou J., Genetic status and management of California condors, Condor, 106, 2, (2004)
dc.relation.referencesRalls K., Sunnucks P., Lacy R.C., Frankham R., Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation, Biol Conserv, 108, (2020)
dc.relation.referencesRamirez O., Altet L., Ensenat C., Et al., Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program, Conserv Genet, 7, 6, pp. 861-878, (2006)
dc.relation.referencesRavenscroft C.H., Whitlock R., Fridley J.D., Rapid genetic divergence in response to 15 years of simulated climate change, Glob Change Biol, 21, pp. 4165-4176, (2015)
dc.relation.referencesReed D.H., Frankham R., Correlation between fitness and genetic diversity, Conserv Biol, 17, pp. 230-237, (2003)
dc.relation.referencesRobert A., Captive breeding genetics and reintroduction success, Biol Conserv, 142, 12, pp. 2915-2922, (2009)
dc.relation.referencesRout T.M., Hauser C.E., Possingham H.P., Minimise long-term loss or maximise short-term gain? Optimal translocation strategies for threatened species, Ecol Model, 201, pp. 67-74, (2007)
dc.relation.referencesRudnick J.A., Lacy R.C., The impact of assumptions about founder relationships on the effectiveness of captive breeding strategies, Conserv Genet, 9, 6, pp. 1439-1450, (2008)
dc.relation.referencesRuiz-Miranda C.R., De Morais M.M., Dietz L.A., Et al., Estimating population sizes to evaluate progress in conservation of endangered golden lion tamarins (Leontopithecus rosalia), Plos One, 3, (2019)
dc.relation.referencesSawyer S.C., Epps C.W., Brashares J.S., Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscapes?, J Appl Ecol, 48, 3, pp. 668-678, (2011)
dc.relation.referencesSeddon P.J., Armstrong D.P., Maloney R.F., Developing the science of reintroduction biology, Conserv Biol, 21, pp. 303-312, (2007)
dc.relation.referencesSigg D.P., Goldizen A.W., Pople A.R., The importance of mating system in translocation programs: Reproductive success of released male bridled nailtail wallabies, Biol Conserv, 123, pp. 289-300, (2005)
dc.relation.referencesTaylor P.D., Fahrig L., Henein K., Merriam G., Connectivity is a vital element of landscape structure, Oikos, 68, pp. 571-573, (1993)
dc.relation.referencesTeixeira J.C., Huber C.D., The inflated significance of neutral genetic diversity in conservation genetics, Proc Natl Acad Sci U S A, 118, 10, (2021)
dc.relation.referencesThomassen H.A., Buermann W., Mila B., Et al., Modeling environmentally associated morphological and genetic variation in a rainforest bird, and its application to conservation prioritization, Evol Appl, 3, 1, pp. 1-16, (2010)
dc.relation.referencesTischendorf L., Fahrig L., On the usage and measurement of landscape connectivity, Oikos, 90, pp. 7-19, (2000)
dc.relation.referencesUrban M.C., Accelerating extinction risk from climate change, Science, 348, pp. 571-573, (2015)
dc.relation.referencesVelo-Anton G., Parra J.L., Parra-Olea G., Zamudio K.R., Tracking climate change in a dispersal-limited species: Reduced spatial and genetic connectivity in a montane salamander, Mol Ecol, 22, 12, pp. 3261-3278, (2013)
dc.relation.referencesWelbergen J.A., Klose S.M., Markus N., Eby P., Climate change and the effects of temperature extremes on Australian flying-foxes, Proc R Soc B: Biol Sci, 275, pp. 419-425, (2008)
dc.relation.referencesWiens J.J., Climate-related local extinctions are already widespread among plant and animal species, Plos Biol, 14, 12, (2016)
dc.relation.referencesWormell D., Marques M.C., International Studbook for the Black Lion Tamarin, Leontopithecus Chrysopygus, (2020)
dc.relation.referencesWright D.J., Spurgin L.G., Collar N.J., Et al., The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler, Mol Ecol, 23, pp. 2165-2177, (2014)
dc.relation.referencesZancolli G., Rodel M.O., Steffan-Dewenter I., Storfer A., Comparative landscape genetics of two river frog species occurring at different elevations on Mount Kilimanjaro, Mol Ecol, 23, pp. 4989-5002, (2014)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.type.driverinfo:eu-repo/semantics/bookPart
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/CAP_LIB
dc.type.spaLibro


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem