Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorOreste P.
dc.contributor.authorSpagnoli G.
dc.contributor.authorLuna Ramos C.A.
dc.date.accessioned2024-12-02T20:15:52Z
dc.date.available2024-12-02T20:15:52Z
dc.date.issued2019
dc.identifier.issn9603182
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28978
dc.description.abstractInduced stresses in sprayed concrete (or shotcrete) are quite complex to evaluate and depend on many factors such as the size and depth of the tunnel, the geomechanical characteristics of the surrounding ground in which the tunnel is excavated, the type of shotcrete, the evolution of its mechanical parameters over time and the excavation face advance rate. In particular, the evolution of the mechanical properties of the shotcrete is crucial regarding the interaction with the tunnel wall and the development of the bending moments and the normal forces which occur along the circumference of the lining. In this research, a new calculation procedure based on the combined use of two calculation methods, the convergence confinement and the hyperstatic reaction methods, is presented. Thanks to this procedure, it is possible to progressively apply the load acting on the lining as the curing phase of the concrete progresses and therefore with the evolution of its mechanical parameters. This procedure has been applied to several examples of calculation, obtaining useful considerations regarding the mechanical behavior of the shotcrete lining when some fundamental parameters of the calculation change. It is possible to achieve bending moments and forces in the lining with the progress of the load steps. It is also possible to determine the trend of the lining safety factor over time and at the end of the loading phase, allowing a proper design of the support, with particular attention to the type of shotcrete and the thickness of the lining. © 2018, Springer Nature Switzerland AG.
dc.format17
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer International Publishing
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceGeotechnical and Geological Engineering
dc.sourceGeotech. Geol. Eng.
dc.sourceScopus
dc.titleThe Elastic Modulus Variation During the Shotcrete Curing Jointly Investigated by the Convergence-Confinement and the Hyperstatic Reaction Methods
datacite.contributorDepartment of Environmental, Land and Infrastructural Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Turin, 10129, Italy
datacite.contributorBASF Construction Solutions GmbH, Dr.-Albert-Frank-Straße 32, Trostberg, 83308, Germany
datacite.contributorFaculty of Engineering, Universidad Mariana, Calle 18 No. 34-104, Pasto, Colombia
datacite.contributorOreste P., Department of Environmental, Land and Infrastructural Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Turin, 10129, Italy
datacite.contributorSpagnoli G., BASF Construction Solutions GmbH, Dr.-Albert-Frank-Straße 32, Trostberg, 83308, Germany
datacite.contributorLuna Ramos C.A., Department of Environmental, Land and Infrastructural Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Turin, 10129, Italy, Faculty of Engineering, Universidad Mariana, Calle 18 No. 34-104, Pasto, Colombia
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonG. Spagnoli
dc.contributor.contactpersonBASF Construction Solutions GmbH, Trostberg, Dr.-Albert-Frank-Straße 32, 83308, Germany
dc.contributor.contactpersonemail: giovanni.spagnoli@basf.com
dc.identifier.doi10.1007/s10706-018-0698-1
dc.identifier.instnameUniversidad Mariana
dc.identifier.localGGENE
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053614684&doi=10.1007%2fs10706-018-0698-1&partnerID=40&md5=9c123acffdabf86c80dd78353eb0b7ce
dc.relation.citationendpage1452
dc.relation.citationstartpage1435
dc.relation.citationvolume37
dc.relation.iscitedby9
dc.relation.referencesChang Y., Stille H., Influence of early age properties of shotcrete on tunnel construction sequences, Shotcrete for underground support VI, pp. 110-117, (1993)
dc.relation.referencesClements M., Comparison of methods for early age strength testing of sprayed fibre reinforced concrete, Proceedings of the 2nd international conference on engineering developments in sprayed fibre reinforced concrete, Cairns, Queensland, Australia, pp. 81-87, (2004)
dc.relation.referencesShotcrete in Australia, (2010)
dc.relation.referencesPrüfung von Beton in Bauwerken—Teil 1: Bohrkernproben—Herstellung, Untersuchung und Prüfung der Druckfestigkeit, (2009)
dc.relation.referencesSpritzbeton—Teil 1: Begriffe, Festlegungen und Konformität, (2006)
dc.relation.referencesPrüfung von Spritzbeton—Teil 2: Druckfestigkeit von jungem Spritzbeton, (2006)
dc.relation.referencesSpritzbeton—Nationale Anwendungsregeln zur Reihe DIN EN 14487 und Regeln für die Bemessung von Spritzbetonkonstruktionen, (1992)
dc.relation.referencesDo N.A., Dias D., Oreste P., Djeran-Maigre I., The behavior of the segmental tunnel lining studied by the hyperstatic reaction method, Eur J Environ Civ Eng, 18, 4, pp. 489-510, (2014)
dc.relation.referencesDo N.A., Dias D., Oreste P., Djeran-Maigre I., A new numerical approach to the hyperstatic reaction method for segmental tunnel linings, Int J Numer Anal Methods Geomech, 38, pp. 1617-1632, (2014)
dc.relation.referencesFranzen T., Garshol K.F., Tomisawa N., Sprayed concrete for final lining: ITA working group report, Tunn Undergr Space Technol, 16, pp. 295-309, (2001)
dc.relation.referencesHemphill G.B., Practical tunnel construction, (2013)
dc.relation.referencesIwaki K., Hirama A., Mitani K., Kaise S., Nakagawa K., A quality control method for shotcrete strength by pneumatic pin penetration test, NDT and E Int, 34, 6, pp. 395-402, (2001)
dc.relation.referencesJolin M., Beaupre D., Understanding wet-mix shotcrete: Mix design, specifications, and placement, Shotcrete Magazine, pp. 6-12, (2003)
dc.relation.referencesMelbye T., Sprayed concrete for rock support, (1994)
dc.relation.referencesMohajerani A., Rodrigues D., Ricciuti C., Wilson C., Early-age strength measurement of shotcrete, J Mater, (2015)
dc.relation.referencesOreste P., Procedure for determining the reaction curve of shotcrete lining considering transient conditions, Rock Mech Rock Eng, 36, 3, pp. 209-236, (2003)
dc.relation.referencesOreste P., A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports, Tunn Undergr Space Technol, 22, pp. 185-205, (2007)
dc.relation.referencesOreste P., The convergence-confinement method: roles and limits in modern geomechanical tunnel design, Am J Appl Sci, 6, 4, pp. 757-771, (2009)
dc.relation.referencesOreste P., The determination of the tunnel structure loads through the analysis of the interaction between the void and the support using the convergence-confinement method, Am J Appl Sci, 11, 11, pp. 1945-1954, (2014)
dc.relation.referencesOreste P., Spagnoli G., Luna Ramos C.A., Sebille L., The hyperstatic reaction method for the analysis of the sprayed concrete linings behavior in tunneling, Geotech Geol Eng, 36, 4, pp. 2143-2169, (2018)
dc.relation.referencesGuideline sprayed concrete, (2006)
dc.relation.referencesPanet M., Guenot A., Analysis of convergence behind the face of a tunnel, Proceedings of the Tunnelling, 82, pp. 197-204, (1982)
dc.relation.referencesPottler R., Time-dependent rock-shotcrete interaction. A numerical shortcut, Comput Geotech, 9, pp. 149-169, (1990)
dc.relation.referencesPrudencio L.R., Accelerating admixtures for shotcrete, Cement Concr Compos, 20, pp. 213-219, (1998)
dc.relation.referencesRispin M., Howard D., Kleven O.B., Garshol K., Gelson J., Safer, deeper, faster: sprayed concrete—an integral component of development mining, (2009)
dc.relation.referencesSpagnoli G., Oreste P., Lo Bianco L., Estimation of shaft radial displacement beyond the excavation bottom before installation of permanent lining in nondilatant weak rocks with a novel formulation, Int J Geomech, 17, (2017)
dc.relation.referencesThomas A., Sprayed concrete lined tunnel, (2009)
dc.relation.referencesWang J., Niu D., Zhang Y., Mechanical properties, permeability and durability of accelerated shotcrete, Constr Build Mater, 95, pp. 312-328, (2015)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsConvergence confinement method
dc.subject.keywordsCuring time
dc.subject.keywordsHyperstatic reaction method
dc.subject.keywordsLining
dc.subject.keywordsRock
dc.subject.keywordsShotcrete
dc.subject.keywordsBending moments
dc.subject.keywordsConcretes
dc.subject.keywordsCuring
dc.subject.keywordsLinings
dc.subject.keywordsMechanical properties
dc.subject.keywordsRocks
dc.subject.keywordsSafety factor
dc.subject.keywordsCalculation procedure
dc.subject.keywordsConvergence-confinement method
dc.subject.keywordsHyper statics
dc.subject.keywordsInduced stress
dc.subject.keywordsMechanical behavior
dc.subject.keywordsMechanical parameters
dc.subject.keywordsReaction method
dc.subject.keywordsSprayed concrete
dc.subject.keywordsbending
dc.subject.keywordselastic modulus
dc.subject.keywordsloading
dc.subject.keywordsmechanical property
dc.subject.keywordsshotcrete
dc.subject.keywordstunnel lining
dc.subject.keywordsShotcreting
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue3


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem