Show simple item record

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorSánchez-Pozo N.N.
dc.contributor.authorTrilles-Oliver S.
dc.contributor.authorSolé-Ribalta A.
dc.contributor.authorLorente-Leyva L.L.
dc.contributor.authorMayorca-Torres D.
dc.contributor.authorPeluffo-Ordóñez D.H.
dc.contributor.editorSanjurjo González H.
dc.contributor.editorPastor López I.
dc.contributor.editorGarcía Bringas P.
dc.contributor.editorQuintián H.
dc.contributor.editorCorchado E.
dc.contributor.other16th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2021
dc.date.accessioned2024-12-02T20:15:51Z
dc.date.available2024-12-02T20:15:51Z
dc.date.issued2021
dc.identifier.isbn978-303086270-1
dc.identifier.issn3029743
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28975
dc.description.abstractThis paper presents a comparative analysis of predictive models applied to air quality estimation. Currently, among other global issues, there is a high concern about air pollution, for this reason, there are several air quality indicators, with carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) being the main ones. When the concentration level of an indicator exceeds an established air quality safety threshold, it is considered harmful to human health, therefore, in cities like London, there are monitoring systems for air pollutants. This study aims to compare the efficiency of stochastic and heuristic predictive models for forecasting ozone (O3) concentration to estimate London's air quality by analyzing an open dataset retrieved from the London Datastore portal. Models based on data analysis have been widely used in air quality forecasting. This paper develops four predictive models (autoregressive integrated moving average - ARIMA, support vector regression - SVR, neural networks (specifically, long-short term memory - LSTM) and Facebook Prophet). Experimentally, ARIMA models and LSTM are proved to reach the highest accuracy in predicting the concentration of air pollutants among the considered models. As a result, the comparative analysis of the loss function (root-mean-square error) reveled that ARIMA and LSTM are the most suitable, accomplishing a low error rate of 0.18 and 0.20, respectively. © 2021, Springer Nature Switzerland AG.
dc.description.sponsorshipFunding text 1: Sergio Trilles has been funded by the Juan de la Cierva - Incorporación postdoctoral programme of the Ministry of Science and Innovation - Spanish government (IJC2018–035017-I).
dc.description.sponsorshipFunding text 2: Acknowledgment. This work is supported by the SDAS Research Group (www.sdas-group.com). Authors are in debt with the SDAS Group internal editor J. Mejía-Ordóñez for the manuscript reviewing and editing.
dc.description.sponsorshipFunding text 3: This work is supported by the SDAS Research Group (www.sdas-group.com). Authors are in debt with the SDAS Group internal editor J. Mejía-Ordoñez for the manuscript reviewing and editing. Sergio Trilles has been funded by the Juan de la Cierva-Incorporaci?n postdoctoral programme of the Ministry of Science and Innovation-Spanish government (IJC2018?035017-I).
dc.format11
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceLect. Notes Comput. Sci.
dc.sourceScopus
dc.titleAlgorithms Air Quality Estimation: A Comparative Study of Stochastic and Heuristic Predictive Models
datacite.contributorUniversitat Oberta de Catalunya, Barcelona, Spain
datacite.contributorSDAS Research Group, Ibarra, Ecuador
datacite.contributorFacultad de Ingeniería, Universidad Mariana, Pasto (Nariño), Colombia
datacite.contributorUniversidad de Granada, Granada, Spain
datacite.contributorInstitute of New Imaging Technologies, Universitat Jaume I, Castelló, Spain
datacite.contributorModeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco
datacite.contributorSánchez-Pozo N.N., Universitat Oberta de Catalunya, Barcelona, Spain, SDAS Research Group, Ibarra, Ecuador
datacite.contributorTrilles-Oliver S., Universitat Oberta de Catalunya, Barcelona, Spain, Institute of New Imaging Technologies, Universitat Jaume I, Castelló, Spain
datacite.contributorSolé-Ribalta A., Universitat Oberta de Catalunya, Barcelona, Spain
datacite.contributorLorente-Leyva L.L., SDAS Research Group, Ibarra, Ecuador
datacite.contributorMayorca-Torres D., SDAS Research Group, Ibarra, Ecuador, Facultad de Ingeniería, Universidad Mariana, Pasto (Nariño), Colombia, Universidad de Granada, Granada, Spain
datacite.contributorPeluffo-Ordóñez D.H., SDAS Research Group, Ibarra, Ecuador, Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco
datacite.contributor16th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2021
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonN.N. Sánchez-Pozo
dc.contributor.contactpersonUniversitat Oberta de Catalunya, Barcelona, Spain
dc.contributor.contactpersonemail: nadia.sanchez@sdas-group.com
dc.contributor.sponsorJuan de la Cierva - Incorporación
dc.contributor.sponsorMinistry of Science and Innovation-Spanish government, (035017-I)
dc.contributor.sponsorMinisterio de Ciencia e Innovación, MICINN, (IJC2018–035017-I)
dc.contributor.sponsorShandong Academy of Sciences, SDAS
dc.identifier.doi10.1007/978-3-030-86271-8_25
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85115884798&doi=10.1007%2f978-3-030-86271-8_25&partnerID=40&md5=9b9bbdb287515f2dd0a2ba6d1071519c
dc.relation.citationendpage304
dc.relation.citationstartpage293
dc.relation.citationvolume12886 LNAI
dc.relation.conferencedate22 September 2021 through 24 September 2021
dc.relation.conferenceplaceBilbao
dc.relation.iscitedby2
dc.relation.referencesRybarczyk Y., Zalakeviciute R., Machine learning approaches for outdoor air quality modelling: A systematic review, Appl. Sci., 8, (2018)
dc.relation.referencesHood C., Et al., Air quality simulations for London using a coupled regional-to-local modelling system, Atmos. Chem. Phys., 18, pp. 11221-11245, (2018)
dc.relation.referencesGaitan M., Cancino J., Eduardo B., Análisis del estado de la calidad del aire en, Bogotá. Rev. Ing. Unknown, pp. 81-92, (2007)
dc.relation.referencesSilva C., Alvarado S., Montano R., Perez P., Modelamiento De La contaminación atmosférica Por Particulas: Comparación De Cuatro Procedimientos Predictivos En, pp. 113-127, (2003)
dc.relation.referencesGil-Alana L.A., Yaya O.S., Carmona-Gonzalez N., Air quality in London: Evidence of persistence, seasonality and trends, Theoret. Appl. Climatol., 142, 1-2, pp. 103-115, (2020)
dc.relation.referencesYadav M., Jain S., Seeja K.R., Prediction of air quality using time series data mining, International Conference on Innovative Computing and Communications, pp. 13-20, (2019)
dc.relation.referencesLorente-Leyva L.L., Alemany M.M.E., Peluffo-Ordonez D.H., Herrera-Granda I.D., A Comparison of machine learning and classical demand forecasting methods: A case study of Ecuadorian textile industry, LOD 2020. LNCS, Vol. 12566, pp. 131-142, (2020)
dc.relation.referencesBrownlee J., Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras, (2020)
dc.relation.referencesLi X., Et al., Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation, Environ. Pollut., 231, pp. 997-1004, (2017)
dc.relation.referencesMa J., Cheng J.C.P., Lin C., Tan Y., Zhang J., Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques, Atmos. Environ., 214, (2019)
dc.relation.referencesRiofrio J., Chang O., Revelo-Fuelagan E.J., Peluffo-Ordonez D.H., Forecasting the consumer price index (CPI) of Ecuador: A comparative study of predictive models, Int. J. Adv. Sci. Eng. Inf. Technol., 10, pp. 1078-1084, (2020)
dc.relation.referencesAl-Musaylh M.S., Deo R.C., Adamowski J.F., Li Y., Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland. Australia, Adv. Eng. Inform., 35, pp. 1-16, (2018)
dc.relation.referencesRani Patra S., Time series forecasting of air pollutant concentration levels using machine learning, Time Ser. Anal., 4, pp. 280-284, (2017)
dc.relation.referencesLopez J., Análisis De Series Detiempo Pronóstico De Demanda De Uso De Aeropuertos En Argentina Al 2022, (2018)
dc.relation.referencesRaimundo M.S., Okamoto J., SVR-wavelet adaptive model for forecasting financial time series, 2018 International Conference Information and Computing Technology, Pp. 111– 114, ICICT 2018, (2018)
dc.relation.referencesAghelpour P., Mohammadi B., Biazar S.M., Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA, Theoret. Appl. Climatol., 138, 3-4, pp. 1471-1480, (2019)
dc.relation.referencesHermiyanty H., Wandira Ayu B., Sinta D., Predicción de sistemas caóticos con redes neuronales: Un estudio comparativo de los modelos de perceptrón multicapa y funciones de base radial, J. Chem. Inf. Model., 8, pp. 1-58, (2017)
dc.relation.referencesFreeman B.S., Taylor G., Gharabaghi B., The J., Forecasting air quality time series using deep learning, J. Air Waste Manage. Assoc., 68, pp. 866-886, (2018)
dc.relation.referencesYing C., Voltages Prediction Algorithm Based on LSTM Recurrent Neural Network, 10, (2020)
dc.relation.referencesLi C., Hsu N.C., Tsay S.-C., A study on the potential applications of satellite data in air quality monitoring and forecasting, Atmos. Environ., 45, pp. 3663-3675, (2011)
dc.relation.referencesLondon K.C., London Average Air Quality Levels
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsAir quality
dc.subject.keywordsContamination
dc.subject.keywordsForecasting
dc.subject.keywordsPredictive models
dc.subject.keywordsCarbon monoxide
dc.subject.keywordsForecasting
dc.subject.keywordsLong short-term memory
dc.subject.keywordsMean square error
dc.subject.keywordsNitrogen oxides
dc.subject.keywordsOzone
dc.subject.keywordsQuality control
dc.subject.keywordsStochastic models
dc.subject.keywordsStochastic systems
dc.subject.keywordsSulfur dioxide
dc.subject.keywordsAir pollutants
dc.subject.keywordsComparative analyzes
dc.subject.keywordsComparatives studies
dc.subject.keywordsConcentration levels
dc.subject.keywordsGlobal issues
dc.subject.keywordsPredictive models
dc.subject.keywordsQuality estimation
dc.subject.keywordsQuality indicators
dc.subject.keywordsQuality safety
dc.subject.keywordsStochastics
dc.subject.keywordsAir quality
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record