dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Sánchez-Pozo N.N. | |
dc.contributor.author | Trilles-Oliver S. | |
dc.contributor.author | Solé-Ribalta A. | |
dc.contributor.author | Lorente-Leyva L.L. | |
dc.contributor.author | Mayorca-Torres D. | |
dc.contributor.author | Peluffo-Ordóñez D.H. | |
dc.contributor.editor | Sanjurjo González H. | |
dc.contributor.editor | Pastor López I. | |
dc.contributor.editor | García Bringas P. | |
dc.contributor.editor | Quintián H. | |
dc.contributor.editor | Corchado E. | |
dc.contributor.other | 16th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2021 | |
dc.date.accessioned | 2024-12-02T20:15:51Z | |
dc.date.available | 2024-12-02T20:15:51Z | |
dc.date.issued | 2021 | |
dc.identifier.isbn | 978-303086270-1 | |
dc.identifier.issn | 3029743 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28975 | |
dc.description.abstract | This paper presents a comparative analysis of predictive models applied to air quality estimation. Currently, among other global issues, there is a high concern about air pollution, for this reason, there are several air quality indicators, with carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) being the main ones. When the concentration level of an indicator exceeds an established air quality safety threshold, it is considered harmful to human health, therefore, in cities like London, there are monitoring systems for air pollutants. This study aims to compare the efficiency of stochastic and heuristic predictive models for forecasting ozone (O3) concentration to estimate London's air quality by analyzing an open dataset retrieved from the London Datastore portal. Models based on data analysis have been widely used in air quality forecasting. This paper develops four predictive models (autoregressive integrated moving average - ARIMA, support vector regression - SVR, neural networks (specifically, long-short term memory - LSTM) and Facebook Prophet). Experimentally, ARIMA models and LSTM are proved to reach the highest accuracy in predicting the concentration of air pollutants among the considered models. As a result, the comparative analysis of the loss function (root-mean-square error) reveled that ARIMA and LSTM are the most suitable, accomplishing a low error rate of 0.18 and 0.20, respectively. © 2021, Springer Nature Switzerland AG. | |
dc.description.sponsorship | Funding text 1: Sergio Trilles has been funded by the Juan de la Cierva - Incorporación postdoctoral programme of the Ministry of Science and Innovation - Spanish government (IJC2018–035017-I). | |
dc.description.sponsorship | Funding text 2: Acknowledgment. This work is supported by the SDAS Research Group (www.sdas-group.com). Authors are in debt with the SDAS Group internal editor J. Mejía-Ordóñez for the manuscript reviewing and editing. | |
dc.description.sponsorship | Funding text 3: This work is supported by the SDAS Research Group (www.sdas-group.com). Authors are in debt with the SDAS Group internal editor J. Mejía-Ordoñez for the manuscript reviewing and editing. Sergio Trilles has been funded by the Juan de la Cierva-Incorporaci?n postdoctoral programme of the Ministry of Science and Innovation-Spanish government (IJC2018?035017-I). | |
dc.format | 11 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.source | Lect. Notes Comput. Sci. | |
dc.source | Scopus | |
dc.title | Algorithms Air Quality Estimation: A Comparative Study of Stochastic and Heuristic Predictive Models | |
datacite.contributor | Universitat Oberta de Catalunya, Barcelona, Spain | |
datacite.contributor | SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | Facultad de Ingeniería, Universidad Mariana, Pasto (Nariño), Colombia | |
datacite.contributor | Universidad de Granada, Granada, Spain | |
datacite.contributor | Institute of New Imaging Technologies, Universitat Jaume I, Castelló, Spain | |
datacite.contributor | Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco | |
datacite.contributor | Sánchez-Pozo N.N., Universitat Oberta de Catalunya, Barcelona, Spain, SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | Trilles-Oliver S., Universitat Oberta de Catalunya, Barcelona, Spain, Institute of New Imaging Technologies, Universitat Jaume I, Castelló, Spain | |
datacite.contributor | Solé-Ribalta A., Universitat Oberta de Catalunya, Barcelona, Spain | |
datacite.contributor | Lorente-Leyva L.L., SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | Mayorca-Torres D., SDAS Research Group, Ibarra, Ecuador, Facultad de Ingeniería, Universidad Mariana, Pasto (Nariño), Colombia, Universidad de Granada, Granada, Spain | |
datacite.contributor | Peluffo-Ordóñez D.H., SDAS Research Group, Ibarra, Ecuador, Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir, Morocco | |
datacite.contributor | 16th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2021 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | N.N. Sánchez-Pozo | |
dc.contributor.contactperson | Universitat Oberta de Catalunya, Barcelona, Spain | |
dc.contributor.contactperson | email: nadia.sanchez@sdas-group.com | |
dc.contributor.sponsor | Juan de la Cierva - Incorporación | |
dc.contributor.sponsor | Ministry of Science and Innovation-Spanish government, (035017-I) | |
dc.contributor.sponsor | Ministerio de Ciencia e Innovación, MICINN, (IJC2018–035017-I) | |
dc.contributor.sponsor | Shandong Academy of Sciences, SDAS | |
dc.identifier.doi | 10.1007/978-3-030-86271-8_25 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115884798&doi=10.1007%2f978-3-030-86271-8_25&partnerID=40&md5=9b9bbdb287515f2dd0a2ba6d1071519c | |
dc.relation.citationendpage | 304 | |
dc.relation.citationstartpage | 293 | |
dc.relation.citationvolume | 12886 LNAI | |
dc.relation.conferencedate | 22 September 2021 through 24 September 2021 | |
dc.relation.conferenceplace | Bilbao | |
dc.relation.iscitedby | 2 | |
dc.relation.references | Rybarczyk Y., Zalakeviciute R., Machine learning approaches for outdoor air quality modelling: A systematic review, Appl. Sci., 8, (2018) | |
dc.relation.references | Hood C., Et al., Air quality simulations for London using a coupled regional-to-local modelling system, Atmos. Chem. Phys., 18, pp. 11221-11245, (2018) | |
dc.relation.references | Gaitan M., Cancino J., Eduardo B., Análisis del estado de la calidad del aire en, Bogotá. Rev. Ing. Unknown, pp. 81-92, (2007) | |
dc.relation.references | Silva C., Alvarado S., Montano R., Perez P., Modelamiento De La contaminación atmosférica Por Particulas: Comparación De Cuatro Procedimientos Predictivos En, pp. 113-127, (2003) | |
dc.relation.references | Gil-Alana L.A., Yaya O.S., Carmona-Gonzalez N., Air quality in London: Evidence of persistence, seasonality and trends, Theoret. Appl. Climatol., 142, 1-2, pp. 103-115, (2020) | |
dc.relation.references | Yadav M., Jain S., Seeja K.R., Prediction of air quality using time series data mining, International Conference on Innovative Computing and Communications, pp. 13-20, (2019) | |
dc.relation.references | Lorente-Leyva L.L., Alemany M.M.E., Peluffo-Ordonez D.H., Herrera-Granda I.D., A Comparison of machine learning and classical demand forecasting methods: A case study of Ecuadorian textile industry, LOD 2020. LNCS, Vol. 12566, pp. 131-142, (2020) | |
dc.relation.references | Brownlee J., Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras, (2020) | |
dc.relation.references | Li X., Et al., Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation, Environ. Pollut., 231, pp. 997-1004, (2017) | |
dc.relation.references | Ma J., Cheng J.C.P., Lin C., Tan Y., Zhang J., Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques, Atmos. Environ., 214, (2019) | |
dc.relation.references | Riofrio J., Chang O., Revelo-Fuelagan E.J., Peluffo-Ordonez D.H., Forecasting the consumer price index (CPI) of Ecuador: A comparative study of predictive models, Int. J. Adv. Sci. Eng. Inf. Technol., 10, pp. 1078-1084, (2020) | |
dc.relation.references | Al-Musaylh M.S., Deo R.C., Adamowski J.F., Li Y., Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland. Australia, Adv. Eng. Inform., 35, pp. 1-16, (2018) | |
dc.relation.references | Rani Patra S., Time series forecasting of air pollutant concentration levels using machine learning, Time Ser. Anal., 4, pp. 280-284, (2017) | |
dc.relation.references | Lopez J., Análisis De Series Detiempo Pronóstico De Demanda De Uso De Aeropuertos En Argentina Al 2022, (2018) | |
dc.relation.references | Raimundo M.S., Okamoto J., SVR-wavelet adaptive model for forecasting financial time series, 2018 International Conference Information and Computing Technology, Pp. 111– 114, ICICT 2018, (2018) | |
dc.relation.references | Aghelpour P., Mohammadi B., Biazar S.M., Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA, Theoret. Appl. Climatol., 138, 3-4, pp. 1471-1480, (2019) | |
dc.relation.references | Hermiyanty H., Wandira Ayu B., Sinta D., Predicción de sistemas caóticos con redes neuronales: Un estudio comparativo de los modelos de perceptrón multicapa y funciones de base radial, J. Chem. Inf. Model., 8, pp. 1-58, (2017) | |
dc.relation.references | Freeman B.S., Taylor G., Gharabaghi B., The J., Forecasting air quality time series using deep learning, J. Air Waste Manage. Assoc., 68, pp. 866-886, (2018) | |
dc.relation.references | Ying C., Voltages Prediction Algorithm Based on LSTM Recurrent Neural Network, 10, (2020) | |
dc.relation.references | Li C., Hsu N.C., Tsay S.-C., A study on the potential applications of satellite data in air quality monitoring and forecasting, Atmos. Environ., 45, pp. 3663-3675, (2011) | |
dc.relation.references | London K.C., London Average Air Quality Levels | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Air quality | |
dc.subject.keywords | Contamination | |
dc.subject.keywords | Forecasting | |
dc.subject.keywords | Predictive models | |
dc.subject.keywords | Carbon monoxide | |
dc.subject.keywords | Forecasting | |
dc.subject.keywords | Long short-term memory | |
dc.subject.keywords | Mean square error | |
dc.subject.keywords | Nitrogen oxides | |
dc.subject.keywords | Ozone | |
dc.subject.keywords | Quality control | |
dc.subject.keywords | Stochastic models | |
dc.subject.keywords | Stochastic systems | |
dc.subject.keywords | Sulfur dioxide | |
dc.subject.keywords | Air pollutants | |
dc.subject.keywords | Comparative analyzes | |
dc.subject.keywords | Comparatives studies | |
dc.subject.keywords | Concentration levels | |
dc.subject.keywords | Global issues | |
dc.subject.keywords | Predictive models | |
dc.subject.keywords | Quality estimation | |
dc.subject.keywords | Quality indicators | |
dc.subject.keywords | Quality safety | |
dc.subject.keywords | Stochastics | |
dc.subject.keywords | Air quality | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia | |