Mostrar el registro sencillo del ítem
Intelligent WSN system for water quality analysis using machine learning algorithms: A case study (Tahuando river from Ecuador)
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Rosero-Montalvo P.D. | |
dc.contributor.author | López-Batista V.F. | |
dc.contributor.author | Riascos J.A. | |
dc.contributor.author | Peluffo-Ordóñez D.H. | |
dc.date.accessioned | 2024-12-02T20:15:48Z | |
dc.date.available | 2024-12-02T20:15:48Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 20724292 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28965 | |
dc.description.abstract | This work presents a wireless sensor network (WSN) system able to determine the water quality of rivers. Particularly, we consider the Tahuando River from Ibarra, Ecuador, as a case study. The main goal of this research is to determine the river's status throughout its route, by generating data reports into an interactive user interface. To this end, we use an array of sensors collecting several measures such as: turbidity, temperature, water quality, pH, and temperature. Subsequently, from the information collected on an Internet-of-Things (IoT) server, we develop a data analysis scheme with both data representation and supervised classification. As an important result, our system outputs a map that shows the contamination levels of the river at different regions. Furthermore, in terms of data analysis performance, the proposed system reduces the data matrix by 97% from its original size, while it reaches a classification performance over 90%. Furthermore, as an additional remarkable result, we here introduce the so-called quantitative metric of balance (QMB), which measures the balance or ratio between performance and power consumption. © 2020 by the authors. | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Remote Sensing | |
dc.source | Remote Sens. | |
dc.source | Scopus | |
dc.title | Intelligent WSN system for water quality analysis using machine learning algorithms: A case study (Tahuando river from Ecuador) | |
datacite.contributor | Department of Computer Science and Automatics Salamanca, Universidad de Salamanca, Salamanca, 37008, Spain | |
datacite.contributor | Department of Applied Sciences, Universidad Técnica del Norte, Ibarra, 100150, Ecuador | |
datacite.contributor | Department of Engineering, Universidad Mariana, Pasto, 520001, Colombia | |
datacite.contributor | Department of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto, 520002, Colombia | |
datacite.contributor | School of Mathematical and Computational Sciences, Universidad Yachay Tech, Urcuquí, 100650, Ecuador | |
datacite.contributor | SDAS Researh Group, Ibarra, 100150, Ecuador | |
datacite.contributor | Rosero-Montalvo P.D., Department of Computer Science and Automatics Salamanca, Universidad de Salamanca, Salamanca, 37008, Spain, Department of Applied Sciences, Universidad Técnica del Norte, Ibarra, 100150, Ecuador | |
datacite.contributor | López-Batista V.F., Department of Computer Science and Automatics Salamanca, Universidad de Salamanca, Salamanca, 37008, Spain | |
datacite.contributor | Riascos J.A., Department of Engineering, Universidad Mariana, Pasto, 520001, Colombia, Department of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto, 520002, Colombia | |
datacite.contributor | Peluffo-Ordóñez D.H., Department of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto, 520002, Colombia, School of Mathematical and Computational Sciences, Universidad Yachay Tech, Urcuquí, 100650, Ecuador, SDAS Researh Group, Ibarra, 100150, Ecuador | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | P.D. Rosero-Montalvo | |
dc.contributor.contactperson | Department of Computer Science and Automatics Salamanca, Universidad de Salamanca, Salamanca, 37008, Spain | |
dc.contributor.contactperson | email: pdrosero@utn.edu.ec | |
dc.identifier.doi | 10.3390/rs12121988 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | 1988 | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086994368&doi=10.3390%2frs12121988&partnerID=40&md5=ff1b17bd290f959a54704bcffa7b3545 | |
dc.relation.citationvolume | 12 | |
dc.relation.iscitedby | 8 | |
dc.relation.references | Venancio Cruz D., Rivelino Gomes de Oliveira M., Cunha Filho M., Venancio da Cruz D., Monitoring pH with quality control based on Geostatistics Methodology, IEEE Lat. Am. Trans, 14, pp. 4787-4791, (2016) | |
dc.relation.references | Yang C., Wang X., The water quality and pollution character in QingShuiHai lake valley-typical urban drinking water sources, Proceedings of the 2011 International Conference on Remote Sensing, pp. 7287-7291, (2011) | |
dc.relation.references | Zhang Z., Zhang F., Xu C., Xu J., Zhang W., Qi Q., Study on the water environment capacity for the typical watershed in Taizihe River, Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, 1, pp. 486-488, (2011) | |
dc.relation.references | Randhawa S., Sandha S.S., Srivastava B., A Multi-sensor Process for In-Situ Monitoring of Water Pollution in Rivers or Lakes for High-Resolution Quantitative and Qualitative Water Quality Data, Proceedings of the 2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES), pp. 122-129, (2016) | |
dc.relation.references | Zhai C., Huang Q., Chang J., Gao F., The study of water resources reasonable allocation of BaoJi area in Wei River with considering the ecology base flow, Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, pp. 816-818, (2011) | |
dc.relation.references | Guo W., Chen J., Sheng Y., Wang J., Integrated evaluation of water quality and quantity of the Wei River reach in Shaanxi Province, Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, pp. 863-866, (2011) | |
dc.relation.references | Zhang H., Xie X., Hou J., Water pollution accident control and urban safety water supply, Proceedings of the 2011 2nd IEEE International Conference on Emergency Management and Management Sciences, pp. 37-40, (2011) | |
dc.relation.references | de Agua S., Biblioteca-Secretaría del Agua, (2020) | |
dc.relation.references | Wang J., Guo X., Zhao W., Meng X., Research on water environmental quality evaluation and characteristics analysis of TongHui River, Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, pp. 1066-1069, (2011) | |
dc.relation.references | Tamami N., Putra D.A., Harsono T., Smart sensor device for detection of water quality as anticipation of disaster environment pollution, Proceedings of the 2016 International Electronics Symposium (IES), pp. 87-92, (2016) | |
dc.relation.references | Rosero-Montalvo P.D., Pijal-Rojas J., Vasquez-Ayala C., Maya E., Pupiales C., Suarez L., Benitez-Pereira H., Peluffo-Ordonez D., Wireless Sensor Networks for Irrigation in Crops Using Multivariate Regression Models, Proceedings of the 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1-6, (2018) | |
dc.relation.references | Ragnoli M., Barile G., Leoni A., Ferri G., Stornelli V., An Autonomous Low-Power LoRa-Based Flood-Monitoring System, Low Power, 10, (2020) | |
dc.relation.references | Alippi C., Intelligence for Embedded Systems | |
dc.relation.references | , pp. 1-283, (2014) | |
dc.relation.references | Rosero-Montalvo P.D., Batista V.F.L., Rosero E.A., Jaramillo E.D., Caraguay J.A., Pijal-Rojas J., Peluffo-Ordonez D.H., Intelligence in Embedded Systems: Overview and Applications | |
dc.relation.references | , pp. 874-883, (2019) | |
dc.relation.references | Guo M., Zhou, X. Research on the water environment capacity of Chanba River downstream, Proceedings of the 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), pp. 4411-4414, (2011) | |
dc.relation.references | Patel H.J., Dabhi V.K., Prajapati H.B., River Water Pollution Analysis using High Resolution Satellite Images: A Survey, Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), pp. 520-525, (2019) | |
dc.relation.references | Shukla A.K., Ojha C.S.P., Garg R.D., Surface water quality assessment of Ganga River Basin, India using index mapping, Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5609-5612, (2017) | |
dc.relation.references | Lin Z., Wang W., Yin H., Jiang S., Jiao G., Yu J., Design of Monitoring System for Rural Drinking Water Source Based on WSN, Proceedings of the 2017 International Conference on Computer Network, pp. 289-293, (2017) | |
dc.relation.references | Sowmya C., Naidu C.D., Somineni R.P., Reddy D.R., Implementation of Wireless Sensor Network for Real Time Overhead Tank Water Quality Monitoring, Proceedings of the 2017 IEEE 7th International Advance Computing Conference (IACC), pp. 546-551, (2017) | |
dc.relation.references | Chen F., Wen F., Jia H., Algorithm of Data Compression Based on Multiple Principal Component Analysis over the WSN, Proceedings of the 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), pp. 1-4, (2010) | |
dc.relation.references | Kadir E.A., Irie H., Rosa S.L., River Water Pollution Monitoring using Multiple Sensor System of WSNs (Case: Siak River, Indonesia), Proceedings of the 2019 6th International Conference on Electrical Engineering, pp. 75-79, (2019) | |
dc.relation.references | Zhang Z., Data Fusion Optimization Analysis of Wireless Sensor Networks Based on Joint DS Evidence Theory and Matrix Analysis, Proceedings of the 2019 4th International Conference on Mechanical, pp. 689-6894, (2019) | |
dc.relation.references | Torres A.J., Quezada M., Carrion L., Coronel I., Barragen A., AHP analysis to minimize the effects produced by the textile industry in the rivers of Cuenca city, Proceedings of the 2017 IEEE Mexican Humanitarian Technology Conference (MHTC), pp. 94-101, (2017) | |
dc.relation.references | Fasículo Provincial de Imbabura, (2020) | |
dc.relation.references | Encarnacion D., Enriquez J., Suarez L., Derecho De La Naturaleza: Caso Rio Tahuando | |
dc.relation.references | , (2012) | |
dc.relation.references | Liu J., Deng Z., Self-tuning weighted measurement fusion Wiener filter for autoregressive moving average signals with coloured noise and its convergence analysis, IET Control. Theory Appl, 6, pp. 1899-1908, (2012) | |
dc.relation.references | Rosero-Montalvo P.D., Lopez-Batista V.F., Peluffo-Ordonez D.H., Erazo-Chamorro V.C., Arciniega-Rocha R.P., Multivariate Approach to Alcohol Detection in Drivers by Sensors and Artificial Vision, From Bioinspired Systems and Biomedical Applications to Machine Learning | |
dc.relation.references | , pp. 234-243, (2019) | |
dc.relation.references | Antolin D., Medrano N., Calvo B., Analysis of the operating life for battery-operated wireless sensor nodes, Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, pp. 3883-3886, (2013) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Prototype selection | |
dc.subject.keywords | River pollution | |
dc.subject.keywords | Supervised classification | |
dc.subject.keywords | WSN | |
dc.subject.keywords | Classification (of information) | |
dc.subject.keywords | Data handling | |
dc.subject.keywords | Internet of things | |
dc.subject.keywords | Learning algorithms | |
dc.subject.keywords | Quality control | |
dc.subject.keywords | Rivers | |
dc.subject.keywords | Supervised learning | |
dc.subject.keywords | User interfaces | |
dc.subject.keywords | Water quality | |
dc.subject.keywords | Wireless sensor networks | |
dc.subject.keywords | Classification performance | |
dc.subject.keywords | Contamination levels | |
dc.subject.keywords | Data representations | |
dc.subject.keywords | Interactive user interfaces | |
dc.subject.keywords | Internet of Things (IOT) | |
dc.subject.keywords | Quantitative metric | |
dc.subject.keywords | Supervised classification | |
dc.subject.keywords | Water quality analysis | |
dc.subject.keywords | River pollution | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.spa | Artículo científico | |
dc.relation.citationissue | 12 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]