Show simple item record

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorParraga-Alava J.
dc.contributor.authorAlcivar-Cevallos R.
dc.contributor.authorRiascos J.A.
dc.contributor.authorBecerra M.A.
dc.contributor.editorBotto-Tobar M.
dc.contributor.editorZamora W.
dc.contributor.editorLarrea Plúa J.
dc.contributor.editorBazurto Roldan J.
dc.contributor.editorSantamaría Philco A.
dc.contributor.other1st International Conference on Systems and Information Sciences, ICCIS 2020
dc.date.accessioned2024-12-02T20:15:48Z
dc.date.available2024-12-02T20:15:48Z
dc.date.issued2021
dc.identifier.isbn978-303059193-9
dc.identifier.issn21945357
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28964
dc.description.abstractEcuador has been recognized for the export of high-quality plant products for food. Plant leaves disease detection is an important task for increasing the quality of the agricultural products and it should be automated to avoid inconsistent and slow detection typical of human inspection. In this study, we propose an automated approach for the detection of aphids on lemon leaves by using convolutional neural networks (CNNs). We boarded it as a binary classification problem and we solved it by using the VGG-16 network architecture. The performance of the neural network was analyzed by carrying out a fine-tuned process where pre-trained weights are updated by unfreezing them in certain layers. We evaluated the fine-tuning process and compared our approach with other machine learning methods using performance metrics for classification problems and receiver operating characteristic (ROC) analysis, respectively and we evidenced the superiority of our approach using statistical tests. Computational results are encouraging since, according to performance metrics, our approach is able to reach average rates between 81% and 97% of correct aphids detection on a real lemons leaf image dataset. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.format11
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceAdvances in Intelligent Systems and Computing
dc.sourceAdv. Intell. Sys. Comput.
dc.sourceScopus
dc.titleAphids Detection on Lemons Leaf Image Using Convolutional Neural Networks
datacite.contributorFacultad de Ciencias Informáticas, Universidad Técnica de Manabí, Portoviejo, Ecuador
datacite.contributorUniversidad de Santiago de Chile, Santiago, Chile
datacite.contributorCorporación Universitaria Autónoma de Nariño, Pasto, Colombia
datacite.contributorUniversidad Mariana, Pasto, Colombia
datacite.contributorInstitución Universitaria Pascual Bravo, Medellín, Colombia
datacite.contributorSDAS Research Group, Ibarra, Ecuador
datacite.contributorParraga-Alava J., Facultad de Ciencias Informáticas, Universidad Técnica de Manabí, Portoviejo, Ecuador, Universidad de Santiago de Chile, Santiago, Chile, SDAS Research Group, Ibarra, Ecuador
datacite.contributorAlcivar-Cevallos R., Universidad de Santiago de Chile, Santiago, Chile
datacite.contributorRiascos J.A., Corporación Universitaria Autónoma de Nariño, Pasto, Colombia, Universidad Mariana, Pasto, Colombia, SDAS Research Group, Ibarra, Ecuador
datacite.contributorBecerra M.A., Institución Universitaria Pascual Bravo, Medellín, Colombia, SDAS Research Group, Ibarra, Ecuador
datacite.contributor1st International Conference on Systems and Information Sciences, ICCIS 2020
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonJ. Parraga-Alava
dc.contributor.contactpersonFacultad de Ciencias Informáticas, Universidad Técnica de Manabí, Portoviejo, Ecuador
dc.contributor.contactpersonemail: jorge.parraga@usach.cl
dc.identifier.doi10.1007/978-3-030-59194-6_2
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094138304&doi=10.1007%2f978-3-030-59194-6_2&partnerID=40&md5=3abf987c97084b8a571f18d560179ff5
dc.relation.citationendpage27
dc.relation.citationstartpage16
dc.relation.citationvolume1273 AISC
dc.relation.conferencedate27 July 2020 through 29 July 2020
dc.relation.conferenceplaceManta
dc.relation.iscitedby9
dc.relation.referencesAllaire J., Chollet F., Keras: R Interface to Keras, (2019)
dc.relation.referencesAllaire J., Tang Y., Tensorflow: R Interface to Tensorflow, (2019)
dc.relation.referencesBreiman L., Random forests, Mach. Learn., 45, 1, pp. 5-32, (2001)
dc.relation.referencesCarrillo J.M., Parraga-Alava J., How predicting the academic success of students of the ESPAM MFL?: A preliminary decision trees based study, 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1-6, (2018)
dc.relation.referencesChen J., Fan Y., Wang T., Zhang C., Qiu Z., He Y., Automatic segmentation and counting of aphid nymphs on leaves using convolutional neural networks, Agronomy, 8, 8, (2018)
dc.relation.referencesChollet F., Allaire J., Tensorflow for R: Image Classification on Small Datasets with Keras, (2017)
dc.relation.referencesCortes C., Vapnik V., Support-vector networks, Mach. Learn., 20, 3, pp. 273-297, (1995)
dc.relation.referencesDeng J., Dong W., Socher R., Li L., Li K., Fei-Fei L., Imagenet: A large-scale hierarchical image database, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, (2009)
dc.relation.referencesHolm S., A simple sequentially rejective multiple test procedure, Scand. J. Stat., 6, 2, pp. 65-70, (1979)
dc.relation.referencesManejo Fitosanitario Del Cultivo De cítricos Medidas Para La Temporada Invernal, (2016)
dc.relation.referencesKaeli D., Mistry P., Schaa D., Zhang D.P., Chapter 9-case study: Image clustering, Heterogeneous Computing with Opencl 2.0, pp. 213-228, (2015)
dc.relation.referencesKingma D.P., Ba J., Adam: A Method for Stochastic Optimization, (2014)
dc.relation.referencesMelo F., Receiver Operating Characteristic (ROC) Curve, pp. 1818-1823, (2013)
dc.relation.referencesMeyer D., Dimitriadou E., Hornik K., Weingessel A., Leisch F., E1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), (2019)
dc.relation.referencesParraga-Alava J., Dorn M., Inostroza-Ponta M., A multi-objective gene clustering algorithm guided by apriori biological knowledge with intensification and diversification strategies, Biodata Min, 11, 1, (2018)
dc.relation.referencesPedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine learning in python, J. Mach. Learn. Res., 12, pp. 2825-2830, (2011)
dc.relation.referencesPickett J.A., Allemann R.K., Birkett M.A., The semiochemistry of aphids, Nat. Prod. Rep., 30, 10, pp. 1277-1283, (2013)
dc.relation.referencesPerez-Ortiz M., Jimenez-Fernandez S., Gutierrez P.A., Alexandre E., Hervas-Martinez C., Salcedo-Sanz S., A review of classification problems and algorithms in renewable energy applications, Energies, 9, 8, (2016)
dc.relation.referencesRobin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J.C., Muller M., PROC: An open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinform, 12, (2011)
dc.relation.referencesShuli X., Marely L., A Study of Tangerine Pest Recognition Using Advanced Deep Learning Methods, (2018)
dc.relation.referencesSilva C.F., Siebra C.A., An investigation on the use of convolutional neural network for image classification in embedded systems, 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1-6
dc.relation.referencesSimonyan K., Zisserman A., Very deep convolutional networks for large-scale image recognition, 3Rd International Conference on Learning Representations, pp. 1-14, (2015)
dc.relation.referencesTukey J.W., Et al., Comparing individual means in the analysis of variance, Biometrics, 5, 2, pp. 99-114, (1949)
dc.relation.referencesXuesong S., Zi L., Lei S., Jiao W., Yang Z., Aphid identification and counting based on smartphone and machine vision, J. Sens., 2017, pp. 1-7, (2017)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsAphids
dc.subject.keywordsConvolutional Neural Networks
dc.subject.keywordsImage classification
dc.subject.keywordsLemon plants
dc.subject.keywordsSupervised learning
dc.subject.keywordsAgricultural products
dc.subject.keywordsAgricultural robots
dc.subject.keywordsCitrus fruits
dc.subject.keywordsConvolution
dc.subject.keywordsFood products plants
dc.subject.keywordsLearning systems
dc.subject.keywordsMultilayer neural networks
dc.subject.keywordsNetwork architecture
dc.subject.keywordsPlants (botany)
dc.subject.keywordsAutomated approach
dc.subject.keywordsBinary classification problems
dc.subject.keywordsComputational results
dc.subject.keywordsDisease detection
dc.subject.keywordsMachine learning methods
dc.subject.keywordsPerformance metrics
dc.subject.keywordsPlant products
dc.subject.keywordsReceiver operating characteristic analysis
dc.subject.keywordsConvolutional neural networks
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record