dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Parraga-Alava J. | |
dc.contributor.author | Alcivar-Cevallos R. | |
dc.contributor.author | Riascos J.A. | |
dc.contributor.author | Becerra M.A. | |
dc.contributor.editor | Botto-Tobar M. | |
dc.contributor.editor | Zamora W. | |
dc.contributor.editor | Larrea Plúa J. | |
dc.contributor.editor | Bazurto Roldan J. | |
dc.contributor.editor | Santamaría Philco A. | |
dc.contributor.other | 1st International Conference on Systems and Information Sciences, ICCIS 2020 | |
dc.date.accessioned | 2024-12-02T20:15:48Z | |
dc.date.available | 2024-12-02T20:15:48Z | |
dc.date.issued | 2021 | |
dc.identifier.isbn | 978-303059193-9 | |
dc.identifier.issn | 21945357 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28964 | |
dc.description.abstract | Ecuador has been recognized for the export of high-quality plant products for food. Plant leaves disease detection is an important task for increasing the quality of the agricultural products and it should be automated to avoid inconsistent and slow detection typical of human inspection. In this study, we propose an automated approach for the detection of aphids on lemon leaves by using convolutional neural networks (CNNs). We boarded it as a binary classification problem and we solved it by using the VGG-16 network architecture. The performance of the neural network was analyzed by carrying out a fine-tuned process where pre-trained weights are updated by unfreezing them in certain layers. We evaluated the fine-tuning process and compared our approach with other machine learning methods using performance metrics for classification problems and receiver operating characteristic (ROC) analysis, respectively and we evidenced the superiority of our approach using statistical tests. Computational results are encouraging since, according to performance metrics, our approach is able to reach average rates between 81% and 97% of correct aphids detection on a real lemons leaf image dataset. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG. | |
dc.format | 11 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Advances in Intelligent Systems and Computing | |
dc.source | Adv. Intell. Sys. Comput. | |
dc.source | Scopus | |
dc.title | Aphids Detection on Lemons Leaf Image Using Convolutional Neural Networks | |
datacite.contributor | Facultad de Ciencias Informáticas, Universidad Técnica de Manabí, Portoviejo, Ecuador | |
datacite.contributor | Universidad de Santiago de Chile, Santiago, Chile | |
datacite.contributor | Corporación Universitaria Autónoma de Nariño, Pasto, Colombia | |
datacite.contributor | Universidad Mariana, Pasto, Colombia | |
datacite.contributor | Institución Universitaria Pascual Bravo, Medellín, Colombia | |
datacite.contributor | SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | Parraga-Alava J., Facultad de Ciencias Informáticas, Universidad Técnica de Manabí, Portoviejo, Ecuador, Universidad de Santiago de Chile, Santiago, Chile, SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | Alcivar-Cevallos R., Universidad de Santiago de Chile, Santiago, Chile | |
datacite.contributor | Riascos J.A., Corporación Universitaria Autónoma de Nariño, Pasto, Colombia, Universidad Mariana, Pasto, Colombia, SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | Becerra M.A., Institución Universitaria Pascual Bravo, Medellín, Colombia, SDAS Research Group, Ibarra, Ecuador | |
datacite.contributor | 1st International Conference on Systems and Information Sciences, ICCIS 2020 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | J. Parraga-Alava | |
dc.contributor.contactperson | Facultad de Ciencias Informáticas, Universidad Técnica de Manabí, Portoviejo, Ecuador | |
dc.contributor.contactperson | email: jorge.parraga@usach.cl | |
dc.identifier.doi | 10.1007/978-3-030-59194-6_2 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094138304&doi=10.1007%2f978-3-030-59194-6_2&partnerID=40&md5=3abf987c97084b8a571f18d560179ff5 | |
dc.relation.citationendpage | 27 | |
dc.relation.citationstartpage | 16 | |
dc.relation.citationvolume | 1273 AISC | |
dc.relation.conferencedate | 27 July 2020 through 29 July 2020 | |
dc.relation.conferenceplace | Manta | |
dc.relation.iscitedby | 9 | |
dc.relation.references | Allaire J., Chollet F., Keras: R Interface to Keras, (2019) | |
dc.relation.references | Allaire J., Tang Y., Tensorflow: R Interface to Tensorflow, (2019) | |
dc.relation.references | Breiman L., Random forests, Mach. Learn., 45, 1, pp. 5-32, (2001) | |
dc.relation.references | Carrillo J.M., Parraga-Alava J., How predicting the academic success of students of the ESPAM MFL?: A preliminary decision trees based study, 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1-6, (2018) | |
dc.relation.references | Chen J., Fan Y., Wang T., Zhang C., Qiu Z., He Y., Automatic segmentation and counting of aphid nymphs on leaves using convolutional neural networks, Agronomy, 8, 8, (2018) | |
dc.relation.references | Chollet F., Allaire J., Tensorflow for R: Image Classification on Small Datasets with Keras, (2017) | |
dc.relation.references | Cortes C., Vapnik V., Support-vector networks, Mach. Learn., 20, 3, pp. 273-297, (1995) | |
dc.relation.references | Deng J., Dong W., Socher R., Li L., Li K., Fei-Fei L., Imagenet: A large-scale hierarchical image database, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, (2009) | |
dc.relation.references | Holm S., A simple sequentially rejective multiple test procedure, Scand. J. Stat., 6, 2, pp. 65-70, (1979) | |
dc.relation.references | Manejo Fitosanitario Del Cultivo De cítricos Medidas Para La Temporada Invernal, (2016) | |
dc.relation.references | Kaeli D., Mistry P., Schaa D., Zhang D.P., Chapter 9-case study: Image clustering, Heterogeneous Computing with Opencl 2.0, pp. 213-228, (2015) | |
dc.relation.references | Kingma D.P., Ba J., Adam: A Method for Stochastic Optimization, (2014) | |
dc.relation.references | Melo F., Receiver Operating Characteristic (ROC) Curve, pp. 1818-1823, (2013) | |
dc.relation.references | Meyer D., Dimitriadou E., Hornik K., Weingessel A., Leisch F., E1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), (2019) | |
dc.relation.references | Parraga-Alava J., Dorn M., Inostroza-Ponta M., A multi-objective gene clustering algorithm guided by apriori biological knowledge with intensification and diversification strategies, Biodata Min, 11, 1, (2018) | |
dc.relation.references | Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine learning in python, J. Mach. Learn. Res., 12, pp. 2825-2830, (2011) | |
dc.relation.references | Pickett J.A., Allemann R.K., Birkett M.A., The semiochemistry of aphids, Nat. Prod. Rep., 30, 10, pp. 1277-1283, (2013) | |
dc.relation.references | Perez-Ortiz M., Jimenez-Fernandez S., Gutierrez P.A., Alexandre E., Hervas-Martinez C., Salcedo-Sanz S., A review of classification problems and algorithms in renewable energy applications, Energies, 9, 8, (2016) | |
dc.relation.references | Robin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J.C., Muller M., PROC: An open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinform, 12, (2011) | |
dc.relation.references | Shuli X., Marely L., A Study of Tangerine Pest Recognition Using Advanced Deep Learning Methods, (2018) | |
dc.relation.references | Silva C.F., Siebra C.A., An investigation on the use of convolutional neural network for image classification in embedded systems, 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1-6 | |
dc.relation.references | Simonyan K., Zisserman A., Very deep convolutional networks for large-scale image recognition, 3Rd International Conference on Learning Representations, pp. 1-14, (2015) | |
dc.relation.references | Tukey J.W., Et al., Comparing individual means in the analysis of variance, Biometrics, 5, 2, pp. 99-114, (1949) | |
dc.relation.references | Xuesong S., Zi L., Lei S., Jiao W., Yang Z., Aphid identification and counting based on smartphone and machine vision, J. Sens., 2017, pp. 1-7, (2017) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Aphids | |
dc.subject.keywords | Convolutional Neural Networks | |
dc.subject.keywords | Image classification | |
dc.subject.keywords | Lemon plants | |
dc.subject.keywords | Supervised learning | |
dc.subject.keywords | Agricultural products | |
dc.subject.keywords | Agricultural robots | |
dc.subject.keywords | Citrus fruits | |
dc.subject.keywords | Convolution | |
dc.subject.keywords | Food products plants | |
dc.subject.keywords | Learning systems | |
dc.subject.keywords | Multilayer neural networks | |
dc.subject.keywords | Network architecture | |
dc.subject.keywords | Plants (botany) | |
dc.subject.keywords | Automated approach | |
dc.subject.keywords | Binary classification problems | |
dc.subject.keywords | Computational results | |
dc.subject.keywords | Disease detection | |
dc.subject.keywords | Machine learning methods | |
dc.subject.keywords | Performance metrics | |
dc.subject.keywords | Plant products | |
dc.subject.keywords | Receiver operating characteristic analysis | |
dc.subject.keywords | Convolutional neural networks | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia | |