Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorCárdenas-Calvachi G.L.
dc.contributor.authorSánchez-Ortiz I.A.
dc.date.accessioned2024-12-02T20:15:46Z
dc.date.available2024-12-02T20:15:46Z
dc.date.issued2020
dc.identifier.issn1206230
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28961
dc.description.abstractThe core objective of the study was to evaluate the organic matter and nitrogen removal efficiency in a recirculating aquaculture system for the intensive laboratory-bred rainbow trout. The treatment system consisted of an upflow reactor (UR), a pre-filtration unit, a three-phase airlift fluidized bed reactor (AFBR), a granular unit for the UR and the AFBR effluents filtration, and an ultraviolet (UV) unit for the final effluent disinfection. A plastic material was used as support media in the UR, and granular zeolite with an effective size of 1.30 mm in an 80 g/L constant concentration was used as a carrier for the AFBR. Average removal efficiencies of biochemical oxygen demand (BOD) chemical oxygen demand (COD), ammonium, nitrite, nitrate, and total nitrogen were 94.4, 91.7, 52.5, 13.4, 1.3 and 6.0% respectively. In the rainbow trout rearing tanks, there was a water volume of 125 L and water exchange rates of 125 and 250 L/h, there were no registered mortalities, the calculated daily weight gains were 1.55 and 1.51 g/day and the final stocking densities were respectively 20.87 and 20.58 kg/m3. The results suggested that the system had the capability to develop a nitrification process for maintaining water quality characteristics within the recommended values for rainbow trout farming, but total nitrogen was not effectively removed due to the weak denitrification process, since there were modest values of nitrite and overall nitrogen removal. © 2020. All Rights Reserved.
dc.description.sponsorship7. Acknowledgments The authors are grateful to the Mariana University and declared that it is the unique funding source for the research described in this work.
dc.format9
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Antioquia
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceRevista Facultad de Ingenieria
dc.sourceRev. Fac. Ing.
dc.sourceScopus
dc.titleRecirculating aquaculture system with three phase fluidized bed reactor: Carbon and nitrogen removal: Sistema de recirculación acuícola con reactor de lecho fluidizado trifásico: Remoción de carbono y nitrógeno
datacite.contributorDepartamento de Ingeniería Ambiental, Universidad Mariana, Calle 18 # 34-104, C.P., 520002, San Juan de Pasto, Nariño, Colombia
datacite.contributorDepartamento de Recursos Hidrobiológicos, Universidad de Nariño, Calle 18 Cr 50 Ciudad Universitaria, C. P. 520002, San Juan de Pasto, Nariño, Colombia
datacite.contributorCárdenas-Calvachi G.L., Departamento de Ingeniería Ambiental, Universidad Mariana, Calle 18 # 34-104, C.P., 520002, San Juan de Pasto, Nariño, Colombia
datacite.contributorSánchez-Ortiz I.A., Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Calle 18 Cr 50 Ciudad Universitaria, C. P. 520002, San Juan de Pasto, Nariño, Colombia
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.sponsorMariana University
dc.identifier.doi10.17533/udea.redin.20200264
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098202203&doi=10.17533%2fudea.redin.20200264&partnerID=40&md5=4bdd3e92525997585ceeb0cf8b61f8c0
dc.relation.citationendpage102
dc.relation.citationstartpage93
dc.relation.iscitedby1
dc.relation.referencesThe State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all, (2016)
dc.relation.referencesTimmons M. B., Ebeling J. M., Recirculating Aquaculture, (2010)
dc.relation.referencesPulatsu S., Et al., The impact of rainbow trout farm effluents on water quality of Karasu stream,Turkey, Turk J Fish Aquat Sci, 4, pp. 9-15, (2004)
dc.relation.referencesDalsgaard J., Larsen B. K., Pedersen P. B., Nitrogen waste from rainbow trout (Oncorhynchus mykiss) with particular focus on urea, Aquacult. Eng, 65, (2005)
dc.relation.referencesSummerfelt S. T., Davidson J. W., Waldrop T. B., Tsukuda S. M., Williams J. B., A partial-reuse system for coldwater aquaculture, Aquacult. Eng, 31, 3, (2004)
dc.relation.referencesLam S. S., Ambak M. A., Jusoh A., Law A. T., Waste excretion of marble goby (Oxyeleotris marmorata Bleeker) fed with different diets, Aquaculture, 274, 1, (2008)
dc.relation.referencesSummerfelt S. T., Sharrer M., Gearheart M., Gillette K., Vinci B. J., Evaluation of partial water reuse systems used for Atlantic salmon smolt production at the White River National Fish Hatchery, Aquacult. Eng, 41, 2, (2009)
dc.relation.referencesLiu Y., Et al., Structure optimization of CycloBio fluidized sand biofilters based on numerical simulation, Aquacult. Eng, 69, (2015)
dc.relation.referencesHutchinson W., Jeffrey M., O'Sullivan D., Casement D., Clarke S., Recirculating aquaculture systems minimum standards for design, construction and management, (2004)
dc.relation.referencesSchroeder J., Et al., Impact of ozonation and residual ozone-produced oxidants on the nitrification performance of moving-bed biofilters from marine recirculating aquaculture systems, Aquacult. Eng, 65, (2015)
dc.relation.referencesSummerfelt S., Design and management of conventional fluidized-sand biofilters, Aquacult. Eng, 34, 3, (2006)
dc.relation.referencesAreerachakul N., Biofilters in recirculation aquaculture system, 96th The IRES International Conference, pp. 16-19, (2018)
dc.relation.referencesPedersen L. F., Oosterveld R., Pedersen P. B., Nitrification performance and robustness of fixed and moving bed biofilters having identical carrier elements, Aquacult. Eng, 65, (2015)
dc.relation.referencesReview of recirculation aquaculture system technologies and their commercial application, prepared for highlands and islands enterprise, final report, (2014)
dc.relation.referencesSchreier H. J., Mirzoyan N., Saito K., Microbial diversity of biological filters in recirculating aquaculture systems, Curr. Opin. Biotechnol, 21, 3, (2010)
dc.relation.referencesSanchez I. A., Et al., Reactores aeróbios de lecho fluidizado trifásico con circulación interna: caracterización hidrodinámica y del soporte, Revista Facultad de Ingeniería Universidad de Antioquia, 56, pp. 68-77, (2010)
dc.relation.referencesSanchez I. A., Matsumoto T., Hydrodynamic characterization and performance evaluation of an aerobic three phase airlift fluidized bed reactor in a recirculation aquaculture system for Nile Tilapia production, Aquacult. Eng, 47, (2012)
dc.relation.referencesTimmons M. B., Ebeling J. M., Wheaton F. W., Summerfelt S. T., Vinci B. J., Sistemas de recirculación para la acuicultura, (2002)
dc.relation.referencesSuelos. ensayo para determinar la granulometría por tamizado, (1979)
dc.relation.referencesConcretos. método de ensayo para el análisis portamizado de los agregados finos y gruesos, (2007)
dc.relation.referencesRichter C., Água. Métodos e Tecnologia de Tratamento, (2009)
dc.relation.referencesFair G. M., Geyer J. C., Purificación de aguas y tratamiento y remoción de aguas residuales, ser, Ingeniería sanitaria y de aguas residuales, (1994)
dc.relation.referencesLevstek M., Plazl I., Rouse J. D., Estimation of the specific surface area for a porous carrier, Acta Chim Slov, 57, 1, pp. 45-51, (2010)
dc.relation.referencesAmerican Public Health Association (APHA) American Water Works Association (AWWA) Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, (2012)
dc.relation.referencesMorrow R. J., Effects of ammonia on growth and metabolism in tilapia, Oreochromis niloticus, (2009)
dc.relation.referencesMontgomery D. C., Runger G. C., Probabilidad y estadística aplicadas a la ingeniería, (2002)
dc.relation.referencesColt J., Water quality requirements for reuse systems, Aquacult. Eng, 34, 3, (2006)
dc.relation.referencesBowles J. E., Propiedades geofísicas de los Suelos, (1982)
dc.relation.referencesLambe T. W., Whitman R. V., Mecánica de suelos, (2004)
dc.relation.referencesKrause J., Et al., Design guide for recirculating aquaculture system, (2006)
dc.relation.referencesMocanu M., Et al., The influence of different stocking densities on growth performances of Oncorhynchus Mykiss (Walbaum, 1792) in a recirculating aquaculture system, Lucrări Ştiinţifice, 56, pp. 326-331, (2006)
dc.relation.referencesBlanco M. C., La Trucha Cría industrial, (1995)
dc.relation.referencesBreton B., El cultivo de la Trucha, (2006)
dc.relation.referencesMaigual Y. A., Utilização de reator aeróbio de leito fluidizado com circulação em tubos concêntricos no tratamento de águas residuarias da produção intensiva de tilapia com recirculação da água tratada, (2011)
dc.relation.referencesMira P., Pedersen L., Pedersen P. B., Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system, Aquacult. Eng, 78, (2017)
dc.relation.referencesSperling M. V., Basic principles of wastewater treatment, ser. Biological wastewater treatment series, (2007)
dc.relation.referencesRomero J. A., Tratamiento de aguas residuales: Teoría y principios de diseño, (2005)
dc.relation.referencesDe Lemos C. A., Principios del tratamiento biológico de Aguas Residuales. Reactores Anaerobios, ser. Principios del tratamiento biológico de Aguas Residuales, (2013)
dc.relation.referencesCardenas G. L., Ramos R. M., Evaluación de la eficiencia de reactores de lecho fijo utilizando aguas mieles residuales de trapiches artesanales, Ciencia e Ingeniería Neogranadina, 19, 1, (2009)
dc.relation.referencesGoncalves R. F., Et al., Pós-tratamento de efluentes de reactores anaeróbios por reatores com biofilme, Pós-tratamento de efluentes de reactores anaerobios, (2001)
dc.relation.referencesMichel C., Ghittino P., de Kinkelin P., Tratado de las enfermedades de los peces, (1991)
dc.relation.referencesThurston R. V., Russo R. C., Acute toxicity of ammonia to rainbow trout, T. Am. Fish. Soc, 112, 5, (1983)
dc.relation.referencesMartinez C. B., Azebedo F., Ulbricht E., Toxicidade e Efeitos da Amônia em Peixes Neotropicais, Tópicos Especiais em Biologia Aquática e Aqüicultura, (2006)
dc.relation.referencesDavidson J., Helwig N., Summerfelt S. T., Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent, Aquacult. Eng, 39, 1, (2008)
dc.relation.referencesSperling M. V., Introducción a la calidad del agua y al tratamiento de aguas residuales, (2012)
dc.relation.referencesHuang Z., Et al., Ammonia-oxidizing bacteria and archaea within biofilters of a commercial recirculating marine aquaculture system, AMB Expr, 8, 1, (2018)
dc.relation.referencesBartelme R., McLellan S., Newton R., Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira, Front Microbiol, 8, (2017)
dc.relation.referencesPulkkinen J. T., Kiuru T., Aalto S. L., Koskela J., Vielma J., Startup and effects of relative water renewal rate on water quality and growth of rainbow trout (Oncorhynchus mykiss) in a unique RAS research platform, Aquacult. Eng, 82, (2018)
dc.relation.referencesMartinez N. B., Tejeda A., Del Toro A., Sanchez M. P., Zurita F., Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon, Sci. Total Environ, 645, (2018)
dc.relation.referencesDocan A., Cristea V., Dediu L., Mocanu M., Grecu L., The impact of level of the stocking density on the hematological parameters of rainbow trout (Oncorhynchus mykiss) reared in recirculating aquaculture systems, AACL Bioflux, 4, 4, pp. 536-541, (2011)
dc.relation.referencesJojoa G., Ibarra E., Sanchez I. A., Efecto del tiempo de retención hidráulica en reactores de lecho fijo para el tratamiento de efluentes del cultivo de Trucha arcoíris (Oncorhynchus mykiss), Livestock Res. Rural Dev, 25, 10, pp. 1-16, (2013)
dc.relation.referencesSanchez I., Sanguino W., Gomez A., Garcia R., Evaluation of a rainbow trout (Oncorhynchus mikyss) culture water recirculating system, Revista MVZ Córdoba, 19, 3, pp. 4226-4241, (2014)
dc.relation.referencesArredondo J. L., Barriga I. A., Nunez L. G., Ponce J. T., Cultivo de Trucha Arcoiris (Oncorhynchus mykiss, Walbaum) en un sistema cerrado de recirculación de agua, CIVA 2006, pp. 1038-1047, (2006)
dc.relation.referencesLarsen B. K., Skov P. V., McKenkie D. J., Jokumsen A., The effects of stocking density and low level sustained exercise on the energetic efficiency of rainbow trout (Oncorhynchus mykiss) reared at 19 °C, Aquaculture, 324, (2012)
dc.relation.referencesNorth B. P., Et al., The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss), Aquaculture, 255, 1, (2006)
dc.relation.referencesSirakov I., Ivancheva E., Influence of stocking density on the growth performance of rainbow trout and brown trout are grown in the recirculation system, Bulg. J. Agric. Sci, 14, 2, pp. 150-154, (2008)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsAquaculture
dc.subject.keywordsorganic matter
dc.subject.keywordswastewater
dc.subject.keywordswater treatment
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue97


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem