Mostrar el registro sencillo del ítem
Fractional random walk lattice dynamics
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Michelitsch T.M. | |
dc.contributor.author | Collet B.A. | |
dc.contributor.author | Riascos A.P. | |
dc.contributor.author | Nowakowski A.F. | |
dc.contributor.author | Nicolleau F.C.G.A. | |
dc.date.accessioned | 2024-12-02T20:15:44Z | |
dc.date.available | 2024-12-02T20:15:44Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 17518113 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28953 | |
dc.description.abstract | We analyze time-discrete and time-continuous 'fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in n = 1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices where recovers the normal walk. First we demonstrate that the interval is admissible for the fractional random walk. We derive analytical expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen. © 2017 IOP Publishing Ltd. | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Physics Publishing | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Journal of Physics A: Mathematical and Theoretical | |
dc.source | J. Phys. Math. Theor. | |
dc.source | Scopus | |
dc.title | Fractional random walk lattice dynamics | |
datacite.contributor | Sorbonne Universités, UniversitéPierre et Marie Curie (Paris 6), Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 place Jussieu, Paris Cedex 05, 75252, France | |
datacite.contributor | Department of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia | |
datacite.contributor | Department of Mechanical Engineering, Sheffield Fluid Mechanics Group, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom | |
datacite.contributor | Michelitsch T.M., Sorbonne Universités, UniversitéPierre et Marie Curie (Paris 6), Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 place Jussieu, Paris Cedex 05, 75252, France | |
datacite.contributor | Collet B.A., Sorbonne Universités, UniversitéPierre et Marie Curie (Paris 6), Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 place Jussieu, Paris Cedex 05, 75252, France | |
datacite.contributor | Riascos A.P., Department of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia | |
datacite.contributor | Nowakowski A.F., Department of Mechanical Engineering, Sheffield Fluid Mechanics Group, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom | |
datacite.contributor | Nicolleau F.C.G.A., Department of Mechanical Engineering, Sheffield Fluid Mechanics Group, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.identifier.doi | 10.1088/1751-8121/aa5173 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | 55003 | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010022846&doi=10.1088%2f1751-8121%2faa5173&partnerID=40&md5=62d195b74232a121587c98d57718d5e8 | |
dc.relation.citationvolume | 50 | |
dc.relation.iscitedby | 25 | |
dc.relation.references | Abramowitz M., Stegun A., Handbook of mathematical function, national Bureau of standards, Appl. Math. Ser., 55, (1972) | |
dc.relation.references | Barkai E., Fractional Fokker-Planck equation, solution, and application, Phys. Rev., 63, (2001) | |
dc.relation.references | Benichou O., Loverdo C., Moreau M., Voituriez R., Intermittent search strategies, Rev. Mod. Phys., 83, pp. 28-81, (2011) | |
dc.relation.references | Chechkin A., Metzler R., Klafter J., Gonchar V., Klages R., Et al., Introduction to the theory of Lévy flights, Anomalous Transport: Foundations and Applications, (2008) | |
dc.relation.references | Chechkin A., Gonchar V.Y., Klafter J., Metzler R., Fundamentals of Lévy flight processes, Adv. Chem. Phys., 133, pp. 439-496, (2006) | |
dc.relation.references | Metzler R., Chechkin A., Klafter J., Lévy Statistics, Anomalous Statistics, Anomalous Transport: Lévy Flights, Subdiffusion, (2009) | |
dc.relation.references | Doyle P.G., Snell J.L., Random Walks and Electric Networks, (1984) | |
dc.relation.references | Hilfer R., Klages R., Et al., Threefold introduction to fractional derivatives, Anomalous Transport: Foundations and Applications, (2008) | |
dc.relation.references | Dorogovtsev S.N., Goltsev A.V., Critical phenomena in complex networks, Rev. Mod. Phys., 80, pp. 1275-1335, (2008) | |
dc.relation.references | Kemeny J.G., Snell J.L., Finite Markov Chains, (1976) | |
dc.relation.references | Laskin N., Fractional Schrödinger equation, Phys. Rev., 66, (2002) | |
dc.relation.references | Laskin N., Zaslavsky A., Nonlinear fractional dynamics on a lattice with long-range interactions, Physica, 368, pp. 38-45, (2006) | |
dc.relation.references | Norris J.R., (1998) | |
dc.relation.references | Metzler R., Klafter J., The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, pp. 1-77, (2000) | |
dc.relation.references | Metzler R., Klafter J., The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen., 37, (2004) | |
dc.relation.references | Michelitsch T.M., Collet B., Nowakowski A.F., Nicolleau F.C.G.A., Fractional Laplacian matrix on the finite periodic linear chain and its periodic Riesz fractional derivative continuum limit, J. Phys. A: Math. Theor., 48, (2015) | |
dc.relation.references | Michelitsch T.M., Collet B., Nowakowski A.F., Nicolleau F.C.G.A., Lattice fractional Laplacian and its continuum limit kernel on the finite cyclic chain, Chaos Solitons Fractals, 82, pp. 38-47, (2016) | |
dc.relation.references | Michelitsch T.M., Collet B., Riascos A.P., Nowakowski A.F., Nicolleau F.C.G.A., Fractional lattice dynamics: Nonlocal constitutive behavior generated by power law matrix functions and their fractional continuum limit kernels, Int. Summer School-Conf. Advanced Problems in Mechanics, (2016) | |
dc.relation.references | Michelitsch T., Collet B., Wang X., Nonlocal constitutive laws generated by matrix functions: Lattice dynamics models and their continuum limits, Int. J. Eng. Sci., 80, (2014) | |
dc.relation.references | Michelitsch T.M., Maugin G.A., Nowakowski A.F., Nicolleau F.C.G.A., Rahman M., The fractional Laplacian as a limiting case of a self-similar spring model and applications to n-dimensional anomalous diffusion, Fractional Calclulus Appl. Anal., 16, pp. 827-859, (2013) | |
dc.relation.references | Michelitsch T.M., Derogar S., Rahman M., A regularized representation of the fractional Laplacian in n dimensions and its relation to Weierstrass-Mandelbrot-type fractal functions, IMA J. Appl. Math., 79, (2014) | |
dc.relation.references | Newmann M.E.J., Complex systems: A survey, Am. J. Phys., 79, (2011) | |
dc.relation.references | Noh J.D., Rieger H., Random walks on complex networks, Phys. Rev. Lett., 92, (2004) | |
dc.relation.references | Ortigueira M.D., Riesz potential operators and inverses via fractional centered derivatives, Int. J. Math. Math. Sci., (2006) | |
dc.relation.references | Ortigueira M.D., Coito F.J.V., Trujillo J.J., Discrete-time differential systems, Signal Process., 107, pp. 198-217, (2015) | |
dc.relation.references | Ortigueira M.D., Fractional Calculus for Scientists and Engineers, 84, (2011) | |
dc.relation.references | Redner S., A Guide to First Passage Processes, (2001) | |
dc.relation.references | Riascos A.P., Mateos J.L., Long-range navigation on complex networks using Lévy random walks, Phys. Rev., 86, (2012) | |
dc.relation.references | Riascos A.P., Mateos J.L., Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights, Phys. Rev., 90, (2014) | |
dc.relation.references | Riascos A.P., Mateos J.L., Fractional diffusion on circulant networks: Emergence of a dynamical small world, J. Stat. Mech., 2015, 7, (2015) | |
dc.relation.references | Riascos A.P., Mateos J.L., Fractional quantum mechanics on networks: Long-range dynamics and quantum transport, Phys. Rev., 92, (2015) | |
dc.relation.references | Samko S., Kilbas A., Marichev O., Fractional Integrals and Derivatives: Theory and Applications, (1993) | |
dc.relation.references | Samko S., Fractional Weyl-Riesz integrodifferentiation of periodic functions of two variables via the periodization of the Riesz Kernel, Appl. Anal., 82, pp. 269-299, (2003) | |
dc.relation.references | Podlubny I., Fractional Differential Equations, (1999) | |
dc.relation.references | Tarasov V.E., Lattice fractional calculus, Appl. Math. Comput., 257, (2015) | |
dc.relation.references | Watts D.J., Strogatz S.H., Nature, 393, (1998) | |
dc.relation.references | Zhang Z., Julaiti A., Hou B., Zhang H., Chen G., Mean first passage time for random walks on undirected networks, Eur. Phys. J., 84, (2011) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | anomalous diffusion and transport on networks | |
dc.subject.keywords | fractional Laplacian matrix | |
dc.subject.keywords | fractional random walks | |
dc.subject.keywords | Levy flights | |
dc.subject.keywords | network dynamics | |
dc.subject.keywords | random walks | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.spa | Artículo científico | |
dc.relation.citationissue | 5 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]