Mostrar el registro sencillo del ítem
Water content dynamics in a volcanic ash soil slope in southern Chile
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Dörner J. | |
dc.contributor.author | Huertas J. | |
dc.contributor.author | Cuevas J.G. | |
dc.contributor.author | Leiva C. | |
dc.contributor.author | Paulino L. | |
dc.contributor.author | Arumí J.L. | |
dc.date.accessioned | 2024-12-02T20:15:42Z | |
dc.date.available | 2024-12-02T20:15:42Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 14368730 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28943 | |
dc.description.abstract | Andisols present exceptional physical properties, making up < 1% of the world's soils. While there is a lot of information about non-volcanic soil properties, research about soils of volcanic origin is limited. Specifically, no major studies have been carried out to improve our knowledge of these soils' hydrological behavior, which is relevant due to the impact of climate change on water resources and to the soil's role in the hydrological cycle. Thus, the aim of this work was to analyze the water content dynamics of a soil slope derived from volcanic ashes under different land covers. We hypothesized that land cover, rainfall, and air temperature, in addition to the hydraulic properties of the volcanic ash soil, regulate the slope's water content dynamics. Our study was conducted in S Chile, in a fluvial terrace covered by pastures in the uplands, a native forest in the adjacent slope, and a hygrophilous forest in the floodplain at the base of the slope, surrounding a stream. Soil physical properties, such as bulk density (Db), volume of macropores (wCP), plant available water (PAW) and saturated hydraulic conductivity (Ks) were studied. Rainfall, air temperature, volumetric water content (θField) and soil temperature were continuously measured with data loggers. The groundwater level was also measured. Water content dynamics reflect the behavior of rainfall and air/soil temperatures under different land covers, as well as, revealing the specific behavior of volcanic soil's pore system (e.g., Db < 0.9 Mg m-3). Soil depths exposed to more intensive and dynamic wetting and drying cycles presented well-defined water release ranges as compared to the pore system of deeper soil horizons. Soils present large water holding capacities (PAW > 24%), however, during summer they can reach volumetric water contents near to the permanent wilting point quickly at a depth of 5 cm. The water table altitude was directly related to the temporal changes of θField measured at a depth of 50 cm, highlighting the fact that the saturated and unsaturated zones are connected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | |
dc.format | 9 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Wiley-VCH Verlag | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Journal of Plant Nutrition and Soil Science | |
dc.source | J. Plant Nutr. Soil Sci. | |
dc.source | Scopus | |
dc.title | Water content dynamics in a volcanic ash soil slope in southern Chile | |
datacite.contributor | Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile | |
datacite.contributor | Centro de Investigación en Suelos Volcánicos, Universidad Austral de Chile, Valdivia, Chile | |
datacite.contributor | Facultad de Ingeniería, Universidad Mariana, San Juan de Pasto, Colombia | |
datacite.contributor | Magíster en Ciencias, Mención Recursos Hídricos, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile | |
datacite.contributor | Instituto de Investigaciones Agropecuarias - Oficina INIA Los Ríos, Valdivia, Chile | |
datacite.contributor | Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Campus Chillán, Chile | |
datacite.contributor | Departamento de Recursos Hídricos, Facultad de Ingeniería Agrícola, Centro CRHIAM Conicyt/Fondap-15130015 | |
datacite.contributor | Universidad de Concepción, Campus Chillán, Chile | |
datacite.contributor | Dörner J., Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile, Centro de Investigación en Suelos Volcánicos, Universidad Austral de Chile, Valdivia, Chile | |
datacite.contributor | Huertas J., Facultad de Ingeniería, Universidad Mariana, San Juan de Pasto, Colombia, Magíster en Ciencias, Mención Recursos Hídricos, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile | |
datacite.contributor | Cuevas J.G., Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile, Centro de Investigación en Suelos Volcánicos, Universidad Austral de Chile, Valdivia, Chile, Instituto de Investigaciones Agropecuarias - Oficina INIA Los Ríos, Valdivia, Chile | |
datacite.contributor | Leiva C., Instituto de Investigaciones Agropecuarias - Oficina INIA Los Ríos, Valdivia, Chile | |
datacite.contributor | Paulino L., Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Campus Chillán, Chile | |
datacite.contributor | Arumí J.L., Departamento de Recursos Hídricos, Facultad de Ingeniería Agrícola, Centro CRHIAM Conicyt/Fondap-15130015 | |
datacite.contributor | Universidad de Concepción, Campus Chillán, Chile | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | J. Dörner | |
dc.contributor.contactperson | Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile | |
dc.contributor.contactperson | email: josedorner@uach.cl | |
dc.identifier.doi | 10.1002/jpln.201500112 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | JNSSF | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938422884&doi=10.1002%2fjpln.201500112&partnerID=40&md5=c641fb84b2eb97051fb3307363322c37 | |
dc.relation.citationendpage | 702 | |
dc.relation.citationstartpage | 693 | |
dc.relation.citationvolume | 178 | |
dc.relation.iscitedby | 43 | |
dc.relation.references | Armas-Espinel S., Hernandez-Moreno J., Munoz-Carpena R., Regalado C., Physical properties of "sorriba"-cultivated volcanic soils from Tenerife in relation to andic diagnostic parameters., Geoderma, 117, pp. 297-311, (2003) | |
dc.relation.references | Bachmann J., Ellies A., Hartge K.H., Development and application of a new sessile drop contact angle method to assess soil water repellency., J. Hydrol., 231-232, pp. 66-75, (2000) | |
dc.relation.references | Barozzi R., El Suelo de Fundaciones de Valdivia, (1961) | |
dc.relation.references | Blum W., Functions of soil for society and the environment., Rev. Environ. Sci. Bio/Technol., 4, pp. 75-79, (2005) | |
dc.relation.references | Buytaert W., Celleri R., De Bievre B., Cisneros F., Wyseure G., Deckers J., Hofstede R., Human impact on the hydrology of the Andean páramos., Earth-Sci. Rev., 79, pp. 53-72, (2006) | |
dc.relation.references | (2009) | |
dc.relation.references | pp. 327-330, (2003) | |
dc.relation.references | Coppola A., Unimodal and bimodal descriptions of hydraulic properties of aggregated soils., Soil Sci. Soc. Am. J., 64, pp. 1252-1262, (2000) | |
dc.relation.references | Cuevas J.G., Huertas J., Leiva C., Paulino L., Dorner J., Arumi J., Nutrient retention in a microcatchment with low levels of anthropogenic pollution., Bosque, 35, pp. 75-88, (2014) | |
dc.relation.references | Day P.R., Methods of Soil Analysis, Part I., pp. 545-567, (1965) | |
dc.relation.references | Dec D., Dorner J., Balocchi O., Lopez I., Temporal dynamics of hydraulic and mechanical properties of an Andosol under grazing., Soil Till. Res., 125, pp. 44-51, (2012) | |
dc.relation.references | Dec D., Dorner J., Spatial variability of the hydraulic properties of a drop irrigated Andisol under blueberries., J. Soil Sci. Plant Nutr., 14, pp. 589-601, (2014) | |
dc.relation.references | Dorner J., Dec D., Peng X., Horn R., Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions., Geoderma, 159, pp. 189-197, (2010) | |
dc.relation.references | Dorner J., Dec D., Feest E., Vasquez N., Diaz M., Dynamics of soil structure and pore functions of a volcanic ash soil under tillage., Soil Till. Res., 125, pp. 52-60, (2012) | |
dc.relation.references | Ellies A., (1975) | |
dc.relation.references | Ellies A., Gayoso J., Caracterización físico mecánica de dos facies de cancagua de la provincia de Valdivia (Chile)., Agro Sur, 7, pp. 14-18, (1979) | |
dc.relation.references | Greminger P.J., Richard F., Leuenberger J., Untersuchungen zur Wasserbewegung in einem mit Vegetationen bedeckten Hangboden. Projekt Hangsickerung., Mitteilgn. Dtsch. Bodenkundl. Gesellsch., 29, pp. 133-148, (1979) | |
dc.relation.references | Gribovszki Z., Kalicz P., Szilagyi J., Kucsara M., Riparian zone evapotranspiration from diurnal groundwater level fluctuations., J. Hydrol., 349, pp. 6-17, (2008) | |
dc.relation.references | Hartge R., Horn R., Die physikalische Untersuchung von Böden., (2009) | |
dc.relation.references | Horn R., Smucker A., Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils., Soil Till. Res., 82, pp. 5-14, (2005) | |
dc.relation.references | Huber A., (1970) | |
dc.relation.references | Huber A., Iroume A., Bathurst J., Effect of Pinus radiata plantations on water balance in Chile., Hydrol. Process., 22, pp. 142-148, (2008) | |
dc.relation.references | Klute A., Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods., (1986) | |
dc.relation.references | Kutilek M., Nielsen D., Soil Hydrology., (1994) | |
dc.relation.references | Oyarzun C., Godoy R., Staelens J., Donoso P.J., Verhoest N.E.C., Seasonal and annual throughfall and stemflow in Andean temperate forests., Hydrol. Process., 25, pp. 623-633, (2011) | |
dc.relation.references | Rojas C., La terraza fluvial de "cancagua" en la ciudad de Valdivia: nuevos antecedentes estratigráficos y granulométricos., Rev. Geográfica de Chile Terra Australis, 32, pp. 7-24, (1990) | |
dc.relation.references | Reynolds W.D., Drury C.F., Tan C.S., Fox C.A., Yang X.M., Use of indicators and pore volume-function characteristics to quantify soil physical quality., Geoderma, 152, pp. 252-263, (2009) | |
dc.relation.references | Salazar F., Martinez-Lagos J., Alfaro M., Misselbrook T., Low nitrogen leaching losses following a high rate of dairy slurry and urea application to pasture on a volcanic soil in Southern Chile., Agr. Ecosyst. Environ., 160, pp. 23-28, (2012) | |
dc.relation.references | Schwen A., Bodner G., Scholl P., Buchan G.D., Loiskandl W., Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage., Soil Till. Res., 113, pp. 89-98, (2011) | |
dc.relation.references | Seguel O., Horn R., Structure properties and pore dynamics in aggregate beds due to wetting-drying cycles., J. Plant Nutr. Soil Sci., 169, pp. 221-232, (2006) | |
dc.relation.references | Shamsi U.M., GIS Applications for Water, Wastewater, and Stormwater Systems., (2005) | |
dc.relation.references | Shoji S., Nanzyo M., Dahlgren R.A., Volcanic Ash Soils: Genesis Properties and Utilization., (1994) | |
dc.relation.references | Tobon C., Arroyave F., (2007) | |
dc.relation.references | Tobon C., Bruijnzeel L., Frumau K., Calvo-Alvarado J., Tropical Montane Cloud Forests: Science for Conservation and Management., pp. 502-515, (2010) | |
dc.relation.references | Trenberth K., Weather and Climate Extremes., pp. 327-339, (1999) | |
dc.relation.references | Walkley A., Black I.A., An examination of the Degtjareff method for determining soil organic matter and a proposed modification of chromic acid titration method., Soil Sci., 37, pp. 29-38, (1934) | |
dc.relation.references | (2006) | |
dc.relation.references | Zaslavsky D., Rogowski A.S., Hydrologic and morphologic implications of anisotropy and infiltration in soil profile development., Soil Sci. Soc. Am. Proc., 33, pp. 594-599, (1969) | |
dc.relation.references | Zuniga F., Ivelic J., Lopez I., Huygens D., Dorner J., Temporal dynamics of the physical quality of an Andisol under a grazing system subjected to different pasture improvement strategies., Soil Till. Res., 145, pp. 233-241, (2015) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Andisol | |
dc.subject.keywords | Groundwater | |
dc.subject.keywords | Hydraulic conductivity | |
dc.subject.keywords | Vadose zone | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.spa | Artículo científico | |
dc.relation.citationissue | 4 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]