Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorMagalhães A.I., Jr.
dc.contributor.authorde Carvalho J.C.
dc.contributor.authorThoms J.F.
dc.contributor.authorMedina J.D.C.
dc.contributor.authorSoccol C.R.
dc.date.accessioned2024-12-02T20:15:41Z
dc.date.available2024-12-02T20:15:41Z
dc.date.issued2019
dc.identifier.issn9596526
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28940
dc.description.abstractItaconic acid is a biomolecule with potential application in various products, substituting feedstocks within the petrochemical industry. Simulations of different downstream trains were done to compare the method currently used in industry for recovery of itaconic acid with a) adsorption, b) reactive extraction and c) electrodialysis, to evaluate the most advantageous process considering production costs. In these simulations, adsorption is the method with greater potential to substitute the crystallization as the main downstream method, followed by reactive extraction, which showed values close to those of crystallization. The only non-competitive method was electrodialysis. The processing costs of itaconic acid were estimated at 1.13 US$ kg−1 for the upstream and fermentation, and extra 0.89, 0.63, 0.88, 1.50 US$ kg−1 for crystallization, adsorption, extraction, and electrodialysis-based processes, respectively. © 2018 Elsevier Ltd
dc.description.sponsorshipThis research was supported by the Brazilian National Council of Technological and Scientific Development ( CNPq ) and the Coordination for the Improvement of Higher Education Personnel ( CAPES ).
dc.format12
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceJournal of Cleaner Production
dc.sourceJ. Clean. Prod.
dc.sourceScopus
dc.titleTechno-economic analysis of downstream processes in itaconic acid production from fermentation broth
datacite.contributorFederal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. box 19011, Curitiba, 81531-990, Paraná, Brazil
datacite.contributorMariana University, Department of Process Engineering, Pasto, 520002, Nariño, Colombia
datacite.contributorMagalhães A.I., Jr., Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. box 19011, Curitiba, 81531-990, Paraná, Brazil
datacite.contributorde Carvalho J.C., Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. box 19011, Curitiba, 81531-990, Paraná, Brazil
datacite.contributorThoms J.F., Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. box 19011, Curitiba, 81531-990, Paraná, Brazil
datacite.contributorMedina J.D.C., Mariana University, Department of Process Engineering, Pasto, 520002, Nariño, Colombia
datacite.contributorSoccol C.R., Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. box 19011, Curitiba, 81531-990, Paraná, Brazil
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonJ.C. de Carvalho
dc.contributor.contactpersonFederal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Curitiba, P.O. box 19011, 81531-990, Brazil
dc.contributor.contactpersonemail: jccarvalho@ufpr.br
dc.contributor.sponsorBrazilian National Council of Technological and Scientific Development
dc.contributor.sponsorCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES
dc.contributor.sponsorConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq
dc.identifier.doi10.1016/j.jclepro.2018.09.204
dc.identifier.instnameUniversidad Mariana
dc.identifier.localJCROE
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054801114&doi=10.1016%2fj.jclepro.2018.09.204&partnerID=40&md5=82c58994bbbf34695dd1fd210c593bed
dc.relation.citationendpage348
dc.relation.citationstartpage336
dc.relation.citationvolume206
dc.relation.iscitedby48
dc.relation.referencesAsci Y.S., Inci I., A novel approach for itaconic acid extraction: mixture of trioctylamine and tridodecylamine in different diluents, J. Ind. Eng. Chem., 18, pp. 1705-1709, (2012)
dc.relation.referencesCartier R., Pindzola D., Bruins P.F., Particle integration rate in crystal growth, Ind. Eng. Chem., 51, pp. 1409-1414, (1959)
dc.relation.referencesCopergas, Tarifas de gás natural para clientes industriais e comerciais, (2017)
dc.relation.referencesDavison B.H., Nghiem N.P., Richardson G.L., Succinic acid adsorption from fermentation broth and regeneration, Appl. Biochem. Biotechnol., 113-116, pp. 653-669, (2004)
dc.relation.referencesDoran P.M., Bioprocess Engineering Principles, (2013)
dc.relation.referencesEfe C., van der Wielen L.A.M., Straathof A.J.J., Techno-economic analysis of succinic acid production using adsorption from fermentation medium, Biomass Bioenergy, 56, pp. 479-492, (2013)
dc.relation.referencesEnde D.J.A., Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing, (2011)
dc.relation.referencesGarcia-Ochoa F., Gomez E., Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview, Biotechnol. Adv., 27, pp. 153-176, (2009)
dc.relation.referencesGorden J., Geiser E., Wierckx N., Blank L.M., Zeiner T., Brandenbusch C., Integrated process development of a reactive extraction concept for itaconic acid and application to a real fermentation broth, Eng. Life Sci., pp. 1-8, (2017)
dc.relation.referencesGreen D.W., Perry R.H., Perry's Chemical Engineers’ Handbook, (2008)
dc.relation.referencesHevekerl A., Kuenz A., Vorlop K.-D., Influence of the pH on the itaconic acid production with Aspergillus terreus, Appl. Microbiol. Biotechnol., 98, pp. 10005-10012, (2014)
dc.relation.referencesHuang X., Lu X., Li Y., Li X., Li J.J., Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain, Microb. Cell Factories, 13, 1, (2014)
dc.relation.referencesIndex Mundi, Commodity Price Indices, (2018)
dc.relation.referencesKaur G., Elst K., Development of reactive extraction systems for itaconic acid: a step towards in situ product recovery for itaconic acid fermentation, RSC Adv., 4, pp. 45029-45039, (2014)
dc.relation.referencesKeshav A., Wasewar K.L., Back extraction of propionic acid from loaded organic phase, Chem. Eng. Sci., 65, pp. 2751-2757, (2010)
dc.relation.referencesKlement T., Buchs J., Itaconic acid–A biotechnological process in change, Bioresour. Technol., 135, pp. 422-431, (2013)
dc.relation.referencesKrull S., Hevekerl A., Kuenz A., Prusse U., Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers, Appl. Microbiol. Biotechnol., 101, 10, pp. 4063-4072, (2017)
dc.relation.referencesKuenz A., Gallenmuller Y., Willke T., Vorlop K.-D.D., Microbial production of itaconic acid: developing a stable platform for high product concentrations, Appl. Microbiol. Biotechnol., 96, pp. 1209-1216, (2012)
dc.relation.referencesLopez-Garzon C.S., Straathof A.J.J., Recovery of carboxylic acids produced by fermentation, Biotechnol. Adv., 32, pp. 873-904, (2014)
dc.relation.referencesMagalhaes A.I.J., Carvalho J.C., Medina J.D.C., Soccol C.R., Downstream process development in biotechnological itaconic acid manufacturing, Appl. Microbiol. Biotechnol., 101, pp. 1-12, (2017)
dc.relation.referencesMagalhaes A.I.J., Carvalho J.C., Ramirez E.N.M., Medina J.D.C., Soccol C.R., Separation of itaconic acid from aqueous solution onto ion-exchange resins, J. Chem. Eng. Data, 61, pp. 430-437, (2016)
dc.relation.referencesMoresi M., Sappino F., Electrodialytic recovery of some fermentation products from model solutions: techno-economic feasibility study, J. Membr. Sci., 164, pp. 129-140, (2000)
dc.relation.referencesNieder-Heitmann M., Haigh K.F., Gorgens J.F., Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses, Bioresour. Technol., 262, pp. 159-168, (2018)
dc.relation.referencesNovacana, Para Raízen, custo de produção de açúcar no Brasil está entre os mais baixos do mundo, (2016)
dc.relation.referencesOkabe M., Lies D., Kanamasa S., Park E.Y., Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus, Appl. Microbiol. Biotechnol., 84, pp. 597-606, (2009)
dc.relation.referencesOkabe M., Ohta N., Park Y.S., Itaconic acid production in an air-lift bioreactor using a modified draft tube, J. Ferment. Bioeng., 76, pp. 117-122, (1993)
dc.relation.referencesPeters M.S., Timmerhaus K.D., West R.E., Plant Design and Economics for Chemical Engineers, (2002)
dc.relation.referencesSchute K., Detoni C., Kann A., Jung O., Palkovits R., Rose M., Separation in biorefineries by liquid phase adsorption: itaconic acid as case study, ACS Sustain. Chem. Eng., (2016)
dc.relation.referencesSeader J.D., Henley E.J., Roper D.K., Keith D., Separation Process Principles: Chemical and Biochemical Operations, (2011)
dc.relation.referencesSEM-GESP, Média geral de tarifas do Brasil em 2016 é de US$ 145/MWh, (2017)
dc.relation.referencesSinnott R.K., Chemical Engineering Design, 4th Ed. Ed, Coulson and Richardson's Chemical Engineering, (2005)
dc.relation.referencesStraathof A.J.J., The proportion of downstream costs in fermentative production processes, Comprehensive Biotechnology, pp. 811-814, (2011)
dc.relation.referencesUslu H., Datta D., Experimental and theoretical investigations on the reactive extraction of itaconic (2-methylidenebutanedioic) acid using trioctylamine (N, N-dioctyloctan-1-amine), J. Chem. Eng. Data, 60, pp. 1426-1433, (2015)
dc.relation.referencesWillke T., Vorlop K.D.K., Biotechnological production of itaconic acid, Appl. Microbiol. Biotechnol., 56, pp. 289-295, (2001)
dc.relation.referencesZain N.A., Kamal Q.A., Bioremediation of palm oil mill effluent for itaconic acid production by Aspergillus terreus NRRL 1960 immobilized in PVA–Alginate–Sulfate beads, Sustainable Water Treatment, pp. 39-58, (2017)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsAdsorption
dc.subject.keywordsDownstream processes
dc.subject.keywordsExtraction
dc.subject.keywordsItaconic acid
dc.subject.keywordsProduction cost
dc.subject.keywordsTechno-economic analysis
dc.subject.keywordsAdsorption
dc.subject.keywordsCost benefit analysis
dc.subject.keywordsEconomic analysis
dc.subject.keywordsElectrodialysis
dc.subject.keywordsExtraction
dc.subject.keywordsFermentation
dc.subject.keywordsPetrochemicals
dc.subject.keywordsDownstream process
dc.subject.keywordsFermentation broths
dc.subject.keywordsItaconic acid
dc.subject.keywordsPetrochemical industry
dc.subject.keywordsProcessing costs
dc.subject.keywordsProduction cost
dc.subject.keywordsReactive extraction
dc.subject.keywordsTechno- economic analysis
dc.subject.keywordsCosts
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem