Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorRiascos A.P.
dc.contributor.authorMichelitsch T.M.
dc.contributor.authorCollet B.A.
dc.contributor.authorNowakowski A.F.
dc.contributor.authorNicolleau F.C.G.A.
dc.date.accessioned2024-12-02T20:15:40Z
dc.date.available2024-12-02T20:15:40Z
dc.date.issued2018
dc.identifier.issn17425468
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28935
dc.description.abstractIn this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Laplacian matrix, that describes the connections of a network, to a dynamic determined by functions of this matrix. The resulting processes are non-local allowing transitions of the random walker from one node to nodes beyond its nearest neighbors. We find that only two types of Laplacian functions are admissible with distinct behaviors for long-range steps in the infinite network limit: type (i) functions generate Brownian motions, type (ii) functions Lévy flights. For this asymptotic long-range step behavior only the lowest non-vanishing order of the Laplacian function is relevant, namely first order for type (i), and fractional order for type (ii) functions. In the first part, we discuss spectral properties of the Laplacian matrix and a series of relations that are maintained by a particular type of functions that allow to define random walks on any type of undirected connected networks. Once described general properties, we explore characteristics of random walk strategies that emerge from particular cases with functions defined in terms of exponentials, logarithms and powers of the Laplacian as well as relations of these dynamics with non-local strategies like Lévy flights and fractional transport. Finally, we analyze the global capacity of these random walk strategies to explore networks like lattices and trees and different types of random and complex networks. © 2018 IOP Publishing Ltd and SISSA Medialab srl.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceJournal of Statistical Mechanics: Theory and Experiment
dc.sourceJ. Stat. Mech. Theory Exp.
dc.sourceScopus
dc.titleRandom walks with long-range steps generated by functions of Laplacian matrices
datacite.contributorDepartment of Civil Engineering, Universidad Mariana, San-Juan-de-Pasto, Colombia
datacite.contributorSorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 place Jussieu, Paris, Cedex 05, 75252, France
datacite.contributorSheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
datacite.contributorRiascos A.P., Department of Civil Engineering, Universidad Mariana, San-Juan-de-Pasto, Colombia
datacite.contributorMichelitsch T.M., Sorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 place Jussieu, Paris, Cedex 05, 75252, France
datacite.contributorCollet B.A., Sorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 place Jussieu, Paris, Cedex 05, 75252, France
datacite.contributorNowakowski A.F., Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
datacite.contributorNicolleau F.C.G.A., Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.identifier.doi10.1088/1742-5468/aab04c
dc.identifier.instnameUniversidad Mariana
dc.identifier.local43404
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85046733486&doi=10.1088%2f1742-5468%2faab04c&partnerID=40&md5=4f883a5112e7902103215dcf95c351ac
dc.relation.citationvolume2018
dc.relation.iscitedby18
dc.relation.referencesBarrat A., Barthelemy M., Vespignani A., Dynamical Processes on Complex Networks, (2008)
dc.relation.referencesBrin S., Page L., Comput. Netw. ISDN Syst., 30, pp. 107-117, (1998)
dc.relation.referencesLambiotte R., Sinatra R., Delvenne J.C., Evans T.S., Barahona M., Latora V., Phys. Rev., 84, 1, (2011)
dc.relation.referencesRiascos A.P., Mateos J.L., PLoS One, 12, (2017)
dc.relation.referencesBackstrom L., Leskovec J., Supervised random walks: Predicting and recommending links in social networks, Proc. of the 4th ACM Int. Conf. on Web Search and Data Mining, pp. 635-644, (2011)
dc.relation.referencesKwon S., Choi W., Kim Y., Phys. Rev., 82, 2, (2010)
dc.relation.referencesGrady L., IEEE Trans. Pattern Anal. Mach. Intell., 28, pp. 1768-1783, (2006)
dc.relation.referencesTremblay N., Borgnat P., IEEE Trans. Signal Process., 62, pp. 5227-5239, (2014)
dc.relation.referencesFouss F., Saerens M., Shimbo M., Algorithms and Models for Network Data and Link Analysis, (2016)
dc.relation.referencesMontroll E.W., Weiss G.H., J. Math. Phys., 6, pp. 167-181, (1965)
dc.relation.referencesHughes B.D., Random Walks and Random Environments: Volume 1: Random Walks, (1996)
dc.relation.referencesNoh J.D., Rieger H., Phys. Rev. Lett., 92, (2004)
dc.relation.referencesRiascos A.P., Mateos J.L., Phys. Rev., 86, 5, (2012)
dc.relation.referencesEstrada E., Delvenne J.C., Hatano N., Mateos J.L., Metzler R., Riascos A.P., Schaub M.T., J. Complex Netw., (2017)
dc.relation.referencesWeiss G., Aspects and Applications of the Random Walk, (1994)
dc.relation.referencesTejedor V., Benichou O., Voituriez R., Phys. Rev., 80, 6, (2009)
dc.relation.referencesMasuda N., Porter M.A., Lambiotte R., Phys. Rep., 716, pp. 1-58, (2017)
dc.relation.referencesZhao Y., Weng T., Huang D., Phys. A: Stat. Mech. Appl., 396, pp. 212-223, (2014)
dc.relation.referencesHuang W., Chen S., Wang W., Phys. A: Stat. Mech. Appl., 393, pp. 132-154, (2014)
dc.relation.referencesWeng T., Small M., Zhang J., Hui P., Sci. Rep., 5, (2015)
dc.relation.referencesWeng T., Zhang J., Khajehnejad M., Small M., Zheng R., Hui P., Sci. Rep., 6, (2016)
dc.relation.referencesGuo Q., Cozzo E., Zheng Z., Moreno Y., Sci. Rep., 6, (2016)
dc.relation.referencesRiascos A.P., Mateos J.L., Phys. Rev., 90, 3, (2014)
dc.relation.referencesRiascos A.P., Mateos J.L., J. Stat. Mech., 2015, 7, (2015)
dc.relation.referencesMichelitsch T.M., Collet B., Nowakowski A.F., Nicolleau F.C.G.A., Chaos Solitons Fractals, 82, pp. 38-47, (2016)
dc.relation.referencesMichelitsch T.M., Collet B.A., Riascos A.P., Nowakowski A.F., Nicolleau F.C.G.A., Chaos Solitons Fractals, 92, pp. 43-50, (2016)
dc.relation.referencesMichelitsch T.M., Collet B.A., Riascos A.P., Nowakowski A.F., Nicolleau F.C.G.A., J. Phys. A: Math. Theor., 50, (2017)
dc.relation.referencesDe Nigris S., Hastir A., Lambiotte R., Eur. Phys. J., 89, (2016)
dc.relation.referencesDe Nigris S., Carletti T., Lambiotte R., Phys. Rev., 95, (2017)
dc.relation.referencesMichelitsch T.M., Collet B.A., Riascos A.P., Nowakowski A.F., Nicolleau F.C.G.A., J. Phys. A: Math. Theor., 50, (2017)
dc.relation.referencesRiascos A.P., Mateos J.L., Phys. Rev., 92, 5, (2015)
dc.relation.referencesDe Nigris S., Bautista E., Abry P., Avrachenkov K., Goncalves P., Fractional graph-based semi-supervised learning, 25th European Signal Processing Conf., pp. 356-360, (2017)
dc.relation.referencesVan Mieghem P., Graph Spectra for Complex Networks, (2011)
dc.relation.referencesGodsil C., Royle G., Algebraic Graph Theory, 207, (2001)
dc.relation.referencesNewman M.E.J., Networks: An Introduction, (2010)
dc.relation.referencesChung F., Spectral Graph Theory, 92, (1997)
dc.relation.referencesArenas A., Diaz-Guilera A., Kurths J., Moreno Y., Zhou C., Phys. Rep., 469, pp. 93-153, (2008)
dc.relation.referencesLovasz L., Random walks on graphs: A survey, Combinatorics, Paul Erds Is Eighty, 2, pp. 353-398, (1996)
dc.relation.referencesBlanchard P., Volchenkov D., Random Walks and Diffusions on Graphs and Databases: An Introduction, 10, (2011)
dc.relation.referencesLawler G., Limic V., Random Walk: A Modern Introduction, (2010)
dc.relation.referencesMulken O., Blumen A., Phys. Rep., 502, pp. 37-87, (2011)
dc.relation.referencesBiyikoglu T., Leydold J., Stadler P.F., Laplacian Eigenvectors of Graphs: Perron-Frobenius and Faber-Krahn Type Theorems, 1915, (2007)
dc.relation.referencesFiedler M., Czech. Math. J., 23, pp. 298-305, (1973)
dc.relation.referencesMichelitsch T.M., Collet B., Wang X., Int. J. Eng. Sci., 80, pp. 106-123, (2014)
dc.relation.referencesMicchelli C.A., Willoughby R., Linear Algebra Appl., 23, pp. 141-156, (1979)
dc.relation.referencesBernstein S., Acta Math., 52, pp. 1-66, (1929)
dc.relation.referencesMiller K., Samko S., Integr. Transf. Spec. Func., 12, pp. 389-402, (2001)
dc.relation.referencesMerkle M., Completely Monotone Functions: A Digest, pp. 347-364, (2014)
dc.relation.referencesWatts D.J., Strogatz S.H., Nature, 393, pp. 440-442, (1998)
dc.relation.referencesErdos P., Renyi A., Publ. Math. Debrecen, 6, pp. 290-297, (1959)
dc.relation.referencesBarabasi A.L., Albert R., Science, 286, pp. 509-512, (1999)
dc.relation.referencesZhang Z., Shan T., Chen G., Phys. Rev., 87, (2013)
dc.relation.referencesVan Kampen N.G., Stochastic Processes in Physics and Chemistry, (1992)
dc.relation.referencesSamko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, (1993)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsnetworks
dc.subject.keywordsrandom graphs
dc.subject.keywordsstochastic processes
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue4


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem