Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorImbajoa-Ruiz D.E.
dc.contributor.authorGustin I.D.
dc.contributor.authorBolaños-Ledezma M.
dc.contributor.authorArciniegas-Mejía A.F.
dc.contributor.authorGuasmayan-Guasmayan F.A.
dc.contributor.authorBravo-Montenegro M.J.
dc.contributor.authorCastro-Ospina A.E.
dc.contributor.authorPeluffo-Ordóñez D.H.
dc.contributor.editorBeltran-Castanon C.
dc.contributor.editorFamili F.
dc.contributor.editorNystrom I.
dc.contributor.other21st Iberoamerican Congress on Pattern Recognition, CIARP 2016
dc.date.accessioned2024-12-02T20:15:39Z
dc.date.available2024-12-02T20:15:39Z
dc.date.issued2017
dc.identifier.isbn978-331952276-0
dc.identifier.issn3029743
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28933
dc.description.abstractThis work introduces a multi-labeler kernel novel approach for data classification learning from multiple labelers. The learning process is done by training support-vector machine classifiers using the set of labelers (one labeler per classifier). The objective functions representing the boundary decision of each classifier are mixed by means of a linear combination. Followed from a variable relevance, the weighting factors are calculated regarding kernel matrices representing each labeler. To do so, a so-called supervised kernel function is also introduced, which is used to construct kernel matrices. Our multi-labeler method reaches very good results being a suitable alternative to conventional approaches. © Springer International Publishing AG 2017.
dc.description.sponsorshipD.H. Peluffo-Ordóñez—This work is supported by Faculty of Engineering from Universidad Técnica del Norte.
dc.format8
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceLect. Notes Comput. Sci.
dc.sourceScopus
dc.titleMulti-labeler classification using kernel representations and mixture of classifiers
datacite.contributorUniversidad de Nariño, Pasto, Colombia
datacite.contributorUniversidad Mariana, Pasto, Colombia
datacite.contributorResearch Center of the Instituto Tecnológico Metropolitano, Medellín, Colombia
datacite.contributorUniversidad Técnica del Norte, Ibarra, Ecuador
datacite.contributorImbajoa-Ruiz D.E., Universidad de Nariño, Pasto, Colombia
datacite.contributorGustin I.D., Universidad de Nariño, Pasto, Colombia
datacite.contributorBolaños-Ledezma M., Universidad de Nariño, Pasto, Colombia
datacite.contributorArciniegas-Mejía A.F., Universidad de Nariño, Pasto, Colombia
datacite.contributorGuasmayan-Guasmayan F.A., Universidad de Nariño, Pasto, Colombia, Universidad Mariana, Pasto, Colombia
datacite.contributorBravo-Montenegro M.J., Universidad Mariana, Pasto, Colombia
datacite.contributorCastro-Ospina A.E., Research Center of the Instituto Tecnológico Metropolitano, Medellín, Colombia
datacite.contributorPeluffo-Ordóñez D.H., Universidad de Nariño, Pasto, Colombia, Universidad Técnica del Norte, Ibarra, Ecuador
datacite.contributor21st Iberoamerican Congress on Pattern Recognition, CIARP 2016
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonD.E. Imbajoa-Ruiz
dc.contributor.contactpersonUniversidad de Nariño, Pasto, Colombia
dc.contributor.contactpersonemail: deivy311@hotmail.com
dc.contributor.sponsorUniversidad Técnica del Norte
dc.identifier.doi10.1007/978-3-319-52277-7_42
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85013478371&doi=10.1007%2f978-3-319-52277-7_42&partnerID=40&md5=83e396c687b34dae96b88c3203d632c8
dc.relation.citationendpage351
dc.relation.citationstartpage343
dc.relation.citationvolume10125 LNCS
dc.relation.conferencedate8 November 2016 through 11 November 2016
dc.relation.conferenceplaceLima
dc.relation.iscitedby0
dc.relation.referencesYan Y., Fung G.M., Rosales R., Dy J.G., Active learning from crowds, Proceedings of 28Th International Conference on Machine Learning (ICML-2011), pp. 1161-1168, (2011)
dc.relation.referencesDekel O., Gentile C., Sridharan K., Selective sampling and active learning from single and multiple teachers, J. Mach. Learn. Res, 13, 1, pp. 2655-2697, (2012)
dc.relation.referencesDekel O., Shamir O., Good learners for evil teachers, ICML, 30, (2009)
dc.relation.referencesDonmez P., Carbonell J.G., Schneider J., Efficiently learning the accuracy of labeling sources for selective sampling, Proceedings of 15Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259-268, (2009)
dc.relation.referencesWang W., Zhou Z., Learnability of multi-instance multi-label learning, Chin. Sci. Bull, 57, 19, pp. 2488-2491, (2012)
dc.relation.referencesMurillo S., Peluffo D.H., Castellanos G., Support vector machine-based approach for multi-labelers problems, European Symposium on Artificial Neural Networks, Computational Inteligence and Machine Learning, (2013)
dc.relation.referencesZhang Y., Yeung D.Y., Multilabel relationship learning, ACM Trans. Knowl. Discov. Data (TKDD), 7, 2, (2013)
dc.relation.referencesCerri R., De Carvalho A.C.P., Freitas A.A., Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification, Intell. Data Anal, 15, 6, pp. 861-887, (2011)
dc.relation.referencesMurillo-Rendon S., Peluffo-Ordonez D., Arias-Londono J.D., Castellanos- Dominguez C.G., Multi-labeler analysis for bi-class problems based on soft-margin support vector machines, IWINAC 2013. LNCS, 7930, pp. 274-282, (2013)
dc.relation.referencesPeluffo-Ordonez D.H., Rendon S.M., Arias-Londono J.D., Castellanos-Dominguez G., A multi-class extension for multi-labeler support vector machines, European Symposium on Artificial Neural Networks (ESANN), (2014)
dc.relation.referencesHsu C.W., Lin C.J., A comparison of methods for multiclass support vector machines, IEEE Trans. Neural Netw, 13, 2, pp. 415-425, (2002)
dc.relation.referencesPeluffo-Ordonez D.H., Aldo Lee J., Verleysen M., Generalized kernel framework for unsupervised spectral methods of dimensionality reduction, 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 171-177, (2014)
dc.relation.referencesPant R., Trafalis T.B., SVM classification of uncertain data using robust multikernel methods, Optimization, Control, and Applications in the Information Age. PROMS, 130, (2015)
dc.relation.referencesPeluffo D.H., Lee J.A., Verleysen M., Rodriguez-Sotelo J.L., Castellanos-Dominguez G., Unsupervised relevance analysis for feature extraction and selection: A distance-based approach for feature relevance, International Conference on Pattern Recognition, Applications and Methods - ICPRAM 2014, (2014)
dc.relation.referencesPeluffo-Ordonez D.H., Castro-Ospina A.E., Alvarado-Perez J.C., Revelo- Fuelagan E.J., Multiple kernel learning for spectral dimensionality reduction, CIARP 2015. LNCS, 9423, pp. 626-634, (2015)
dc.relation.referencesLichman M., UCI Machine Learning Repository, (2013)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsMulti-labeler classification
dc.subject.keywordsSupervised kernel
dc.subject.keywordsSupport vector machines
dc.subject.keywordsLearning systems
dc.subject.keywordsMatrix algebra
dc.subject.keywordsSupport vector machines
dc.subject.keywordsConventional approach
dc.subject.keywordsData classification
dc.subject.keywordsKernel representation
dc.subject.keywordsLinear combinations
dc.subject.keywordsObjective functions
dc.subject.keywordsSupervised kernel
dc.subject.keywordsTraining support vector machines
dc.subject.keywordsWeighting factors
dc.subject.keywordsPattern recognition
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem