Mostrar el registro sencillo del ítem
Multi-labeler classification using kernel representations and mixture of classifiers
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Imbajoa-Ruiz D.E. | |
dc.contributor.author | Gustin I.D. | |
dc.contributor.author | Bolaños-Ledezma M. | |
dc.contributor.author | Arciniegas-Mejía A.F. | |
dc.contributor.author | Guasmayan-Guasmayan F.A. | |
dc.contributor.author | Bravo-Montenegro M.J. | |
dc.contributor.author | Castro-Ospina A.E. | |
dc.contributor.author | Peluffo-Ordóñez D.H. | |
dc.contributor.editor | Beltran-Castanon C. | |
dc.contributor.editor | Famili F. | |
dc.contributor.editor | Nystrom I. | |
dc.contributor.other | 21st Iberoamerican Congress on Pattern Recognition, CIARP 2016 | |
dc.date.accessioned | 2024-12-02T20:15:39Z | |
dc.date.available | 2024-12-02T20:15:39Z | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 978-331952276-0 | |
dc.identifier.issn | 3029743 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28933 | |
dc.description.abstract | This work introduces a multi-labeler kernel novel approach for data classification learning from multiple labelers. The learning process is done by training support-vector machine classifiers using the set of labelers (one labeler per classifier). The objective functions representing the boundary decision of each classifier are mixed by means of a linear combination. Followed from a variable relevance, the weighting factors are calculated regarding kernel matrices representing each labeler. To do so, a so-called supervised kernel function is also introduced, which is used to construct kernel matrices. Our multi-labeler method reaches very good results being a suitable alternative to conventional approaches. © Springer International Publishing AG 2017. | |
dc.description.sponsorship | D.H. Peluffo-Ordóñez—This work is supported by Faculty of Engineering from Universidad Técnica del Norte. | |
dc.format | 8 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Verlag | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.source | Lect. Notes Comput. Sci. | |
dc.source | Scopus | |
dc.title | Multi-labeler classification using kernel representations and mixture of classifiers | |
datacite.contributor | Universidad de Nariño, Pasto, Colombia | |
datacite.contributor | Universidad Mariana, Pasto, Colombia | |
datacite.contributor | Research Center of the Instituto Tecnológico Metropolitano, Medellín, Colombia | |
datacite.contributor | Universidad Técnica del Norte, Ibarra, Ecuador | |
datacite.contributor | Imbajoa-Ruiz D.E., Universidad de Nariño, Pasto, Colombia | |
datacite.contributor | Gustin I.D., Universidad de Nariño, Pasto, Colombia | |
datacite.contributor | Bolaños-Ledezma M., Universidad de Nariño, Pasto, Colombia | |
datacite.contributor | Arciniegas-Mejía A.F., Universidad de Nariño, Pasto, Colombia | |
datacite.contributor | Guasmayan-Guasmayan F.A., Universidad de Nariño, Pasto, Colombia, Universidad Mariana, Pasto, Colombia | |
datacite.contributor | Bravo-Montenegro M.J., Universidad Mariana, Pasto, Colombia | |
datacite.contributor | Castro-Ospina A.E., Research Center of the Instituto Tecnológico Metropolitano, Medellín, Colombia | |
datacite.contributor | Peluffo-Ordóñez D.H., Universidad de Nariño, Pasto, Colombia, Universidad Técnica del Norte, Ibarra, Ecuador | |
datacite.contributor | 21st Iberoamerican Congress on Pattern Recognition, CIARP 2016 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | D.E. Imbajoa-Ruiz | |
dc.contributor.contactperson | Universidad de Nariño, Pasto, Colombia | |
dc.contributor.contactperson | email: deivy311@hotmail.com | |
dc.contributor.sponsor | Universidad Técnica del Norte | |
dc.identifier.doi | 10.1007/978-3-319-52277-7_42 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013478371&doi=10.1007%2f978-3-319-52277-7_42&partnerID=40&md5=83e396c687b34dae96b88c3203d632c8 | |
dc.relation.citationendpage | 351 | |
dc.relation.citationstartpage | 343 | |
dc.relation.citationvolume | 10125 LNCS | |
dc.relation.conferencedate | 8 November 2016 through 11 November 2016 | |
dc.relation.conferenceplace | Lima | |
dc.relation.iscitedby | 0 | |
dc.relation.references | Yan Y., Fung G.M., Rosales R., Dy J.G., Active learning from crowds, Proceedings of 28Th International Conference on Machine Learning (ICML-2011), pp. 1161-1168, (2011) | |
dc.relation.references | Dekel O., Gentile C., Sridharan K., Selective sampling and active learning from single and multiple teachers, J. Mach. Learn. Res, 13, 1, pp. 2655-2697, (2012) | |
dc.relation.references | Dekel O., Shamir O., Good learners for evil teachers, ICML, 30, (2009) | |
dc.relation.references | Donmez P., Carbonell J.G., Schneider J., Efficiently learning the accuracy of labeling sources for selective sampling, Proceedings of 15Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259-268, (2009) | |
dc.relation.references | Wang W., Zhou Z., Learnability of multi-instance multi-label learning, Chin. Sci. Bull, 57, 19, pp. 2488-2491, (2012) | |
dc.relation.references | Murillo S., Peluffo D.H., Castellanos G., Support vector machine-based approach for multi-labelers problems, European Symposium on Artificial Neural Networks, Computational Inteligence and Machine Learning, (2013) | |
dc.relation.references | Zhang Y., Yeung D.Y., Multilabel relationship learning, ACM Trans. Knowl. Discov. Data (TKDD), 7, 2, (2013) | |
dc.relation.references | Cerri R., De Carvalho A.C.P., Freitas A.A., Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification, Intell. Data Anal, 15, 6, pp. 861-887, (2011) | |
dc.relation.references | Murillo-Rendon S., Peluffo-Ordonez D., Arias-Londono J.D., Castellanos- Dominguez C.G., Multi-labeler analysis for bi-class problems based on soft-margin support vector machines, IWINAC 2013. LNCS, 7930, pp. 274-282, (2013) | |
dc.relation.references | Peluffo-Ordonez D.H., Rendon S.M., Arias-Londono J.D., Castellanos-Dominguez G., A multi-class extension for multi-labeler support vector machines, European Symposium on Artificial Neural Networks (ESANN), (2014) | |
dc.relation.references | Hsu C.W., Lin C.J., A comparison of methods for multiclass support vector machines, IEEE Trans. Neural Netw, 13, 2, pp. 415-425, (2002) | |
dc.relation.references | Peluffo-Ordonez D.H., Aldo Lee J., Verleysen M., Generalized kernel framework for unsupervised spectral methods of dimensionality reduction, 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 171-177, (2014) | |
dc.relation.references | Pant R., Trafalis T.B., SVM classification of uncertain data using robust multikernel methods, Optimization, Control, and Applications in the Information Age. PROMS, 130, (2015) | |
dc.relation.references | Peluffo D.H., Lee J.A., Verleysen M., Rodriguez-Sotelo J.L., Castellanos-Dominguez G., Unsupervised relevance analysis for feature extraction and selection: A distance-based approach for feature relevance, International Conference on Pattern Recognition, Applications and Methods - ICPRAM 2014, (2014) | |
dc.relation.references | Peluffo-Ordonez D.H., Castro-Ospina A.E., Alvarado-Perez J.C., Revelo- Fuelagan E.J., Multiple kernel learning for spectral dimensionality reduction, CIARP 2015. LNCS, 9423, pp. 626-634, (2015) | |
dc.relation.references | Lichman M., UCI Machine Learning Repository, (2013) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Multi-labeler classification | |
dc.subject.keywords | Supervised kernel | |
dc.subject.keywords | Support vector machines | |
dc.subject.keywords | Learning systems | |
dc.subject.keywords | Matrix algebra | |
dc.subject.keywords | Support vector machines | |
dc.subject.keywords | Conventional approach | |
dc.subject.keywords | Data classification | |
dc.subject.keywords | Kernel representation | |
dc.subject.keywords | Linear combinations | |
dc.subject.keywords | Objective functions | |
dc.subject.keywords | Supervised kernel | |
dc.subject.keywords | Training support vector machines | |
dc.subject.keywords | Weighting factors | |
dc.subject.keywords | Pattern recognition | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]