Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorHernández G.A.M.
dc.contributor.authorLoaiza A.M.
dc.contributor.authorTost G.O.
dc.date.accessioned2024-12-02T20:15:38Z
dc.date.available2024-12-02T20:15:38Z
dc.date.issued2018
dc.identifier.issn19350090
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28926
dc.description.abstractThe article presents the stochastic modeling of a particular dynamic of dengue cases for a constant population with an initial number of susceptible and infected members, a time-dependent force of infection and a probability-generating function from which a linear partial differential equation (PDE) of first order is derived whose solution can assign probabilities to each of the states of the model and the transitions between them. The force of infection is estimated numerically based on a dynamic system of ordinary differential equations. The method of characteristics applied to find the analytical solution of the PDE and subsequently the marginal probabilities of the stochastic process are derived analytically. Furthermore, by applying the cumulative generating function, a system of ordinary differential equations is derived, and the numerical solution determines the values of statistical measures over time. Finally a comparison of the results of the simulations is undertaken to understand the probabilistic dynamics of the process of infection in a population. © 2018 NSP.
dc.format8
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherNatural Sciences Publishing
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceApplied Mathematics and Information Sciences
dc.sourceAppl. Mat. Inf. Sci.
dc.sourceScopus
dc.titleProbabilistic model of dengue
datacite.contributorFaculty of Education, Mariana University, San Juan de Pasto, Nariño, Colombia
datacite.contributorUniversity of Quindio, Armenia, Colombia
datacite.contributorNational University of Colombia, Manizales, Colombia
datacite.contributorHernández G.A.M., Faculty of Education, Mariana University, San Juan de Pasto, Nariño, Colombia
datacite.contributorLoaiza A.M., University of Quindio, Armenia, Colombia
datacite.contributorTost G.O., National University of Colombia, Manizales, Colombia
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonG.A.M. Hernández
dc.contributor.contactpersonFaculty of Education, Mariana University, San Juan de Pasto, Nariño, Colombia
dc.contributor.contactpersonemail: gmarcillo@umariana.edu.co
dc.identifier.doi10.18576/amis/120420
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053420502&doi=10.18576%2famis%2f120420&partnerID=40&md5=c81245bb06e3f3dada5d1713f1425548
dc.relation.citationendpage859
dc.relation.citationstartpage851
dc.relation.citationvolume12
dc.relation.iscitedby0
dc.relation.referencesNormile D., Surprising new dengue virus throws a spanner in disease control efforts, Science, 342, 6157, pp. 415-415, (2013)
dc.relation.referencesThomas S., Strickman D., Vaughn D., Dengue epidemiology: virus epidemiology, ecology, and emergence, Advances in virus research, 61, pp. 235-290, (2003)
dc.relation.referencesBogantes M., Montoya W., Boletin: Dengue, Chikungunya o Zika?, Revista Clinica Escuela de Medicina UCR-HSJD, 6, 5, pp. 1-6, (2016)
dc.relation.referencesBailey N., A simple stochastic epidemic, Biometrika Trust, 37, pp. 193-202, (1950)
dc.relation.referencesGani J., Purdue P., Matrix-Geometric methods for the general stochastic epidemic, IMA Journal of Mathematics Applied in Medicine and Biology, 1, 4, pp. 333-342, (1984)
dc.relation.referencesLounes R., Arazoza H., A two-type model for the Cuban national programme on HIV/AIDS, IMA Journal of Mathematics Applied in Medicine and Biology, 16, 2, pp. 143-154, (1999)
dc.relation.referencesKhan A., Hassan M., Imran M., The effects of a backward bifurcation on a continuous time markov chain model for the transmissions dynamics of single strain dengue virus, Scientific Research, Applied Mathematics, 4, 4, pp. 663-674, (2013)
dc.relation.referencesLee C., Shin J., Kim J., A numerical characteristic method for probability generating functions on stochastic first-order reaction networks, Journal of Mathematical Chemistry, 51, 1, pp. 316-337, (2013)
dc.relation.referencesAnderson R., May R., Infectious diseases of humans, Dynamics and control, (1991)
dc.relation.referencesAllen L., Some discrete-time SI, SIR, and SIS epidemic models, Department of mathematics, Texas: Texas Tech University, 124, 1, pp. 83-105, (1994)
dc.relation.referencesMuench H., Catalytic models in epidemiology, (1959)
dc.relation.referencesGriffiths D., A catalytic model of infection for measles, Applied Statistics, 23, 3, pp. 330-339, (1974)
dc.relation.referencesShkedy Z., Aerts M., Molenberghs G., Beutels P., Damme P., Modelling forces of infection by using monotone local polynomials, Journal of the Royal Statistical Society: Series C (Applied Statistics), 52, 4, pp. 469-485, (2003)
dc.relation.referencesMassad E., Chen M., Struchiner C., Stollenwerk N., Aguiar M., Scale-free network of a dengue epidemic, Applied Mathematics and Computation, 195, 2, pp. 376-381, (2008)
dc.relation.referencesLopez L., Munoz A., Olivar G., Betancourt J., Modelo matematico para el control de la transmision del Dengue, Revista de Salud Publica, Journal of Public Health, 14, 3, pp. 512-523, (2012)
dc.relation.referencesOjeda L., Análisis numérico básico, (2011)
dc.relation.referencesWalter F., Introducción a los Métodos Numéricos, (2014)
dc.relation.referencesKingman J., Poisson processes, (1993)
dc.relation.referencesEsquivel M., Probability generating functions for discrete real-valued random variables, Theory of Probability & Its Applications, 52, 1, pp. 40-57, (2008)
dc.relation.referencesGerst I., The bivariate generating function and two problems in discrete stochastic processes, SIAM Review, 4, 2, pp. 105-114, (1962)
dc.relation.referencesEvans L., Partial differential equations and Monge-Kantorovich mass transfer, Current developments in mathematics, 1997, 1, pp. 65-126, (1997)
dc.relation.referencesIorio V., EDP: un curso de graduacion, (1999)
dc.relation.referencesBailey N., The elements of stochastic processes with applications to the natural sciences, 25, (1990)
dc.relation.referencesSeverini T., Elements of distribution theory, 17, (2005)
dc.relation.referencesBhattacharya R., Waymire E., Stochastic processes with applications, Society for Industrial and AppliedMathematics, 61, (2009)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsAedes aegypti
dc.subject.keywordsDengue
dc.subject.keywordsForce of infection
dc.subject.keywordsPrediction
dc.subject.keywordsProbability generating function
dc.subject.keywordsStochastic processes
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue4


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem