Mostrar el registro sencillo del ítem
Potentiation of the Antimicrobial Effect of Oxytetracycline Combined with Cinnamon, Clove, Oregano, and Red Thyme Essential Oils against MDR Salmonella enterica Strains
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Huerta Lorenzo B. | |
dc.contributor.author | Galán-Relaño Á. | |
dc.contributor.author | Barba-Sánchez E. | |
dc.contributor.author | Romero-Salmoral A. | |
dc.contributor.author | Solarte Portilla A.L. | |
dc.contributor.author | Gómez-Gascón L. | |
dc.contributor.author | Astorga Márquez R.J. | |
dc.date.accessioned | 2024-12-02T20:15:37Z | |
dc.date.available | 2024-12-02T20:15:37Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 20762615 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28925 | |
dc.description.abstract | Tetracyclines have a high resistance percentage in Salmonella spp. of both human and animal origin. Essential oils, such as cinnamon (Cinnamomum zeylanicum), clove (Eugenia caryophyllata), oregano (Origanum vulgare), and red thyme (Thymus zygis), have shown bactericidal activity against this bacterium. However, in many cases, the minimum inhibitory concentration (MIC) exceeds the cytotoxicity limits. The objective of this study was to assess the in vitro efficacy of combining oxytetracycline with essential these oils against field multidrug-resistant (MDR) Salmonella enterica strains. The MIC of each product was determined using the broth microdilution method. The interaction was evaluated using the checkerboard method, by means of the fractional inhibitory concentration index (FICindex) determination. The results showed a positive interaction (synergy and additivity) between oxytetracycline and the four oils tested, resulting in a reduction in both products’ MICs by 2 to 4 times their initial value, in the case of oils, and by 2 to 1024 times in the case of the antibiotic. The combination of oxytetracycline and cinnamon achieved the best results (FICindex 0.5), with a decrease in the antibiotic effective concentration to below the sensitivity threshold (MIC of the combined oxytetracycline 0.5 µg/mL). There was no antagonistic effect in any case, although differences in response were observed depending on the bacterial strain. The results of this study suggest that combining oxytetracycline with cinnamon oil could be an effective alternative for controlling tetracycline-resistant strains of Salmonella. However, its individual use should be further evaluated through in vitro susceptibility tests. © 2024 by the authors. | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Animals | |
dc.source | Animals | |
dc.source | Scopus | |
dc.title | Potentiation of the Antimicrobial Effect of Oxytetracycline Combined with Cinnamon, Clove, Oregano, and Red Thyme Essential Oils against MDR Salmonella enterica Strains | |
datacite.contributor | Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain | |
datacite.contributor | Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain | |
datacite.contributor | Mariana University, Calle 18 No. 34-104 Pasto (N), San Juan de Pasto, 52001, Colombia | |
datacite.contributor | Huerta Lorenzo B., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain | |
datacite.contributor | Galán-Relaño Á., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain | |
datacite.contributor | Barba-Sánchez E., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain | |
datacite.contributor | Romero-Salmoral A., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain | |
datacite.contributor | Solarte Portilla A.L., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Mariana University, Calle 18 No. 34-104 Pasto (N), San Juan de Pasto, 52001, Colombia | |
datacite.contributor | Gómez-Gascón L., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain | |
datacite.contributor | Astorga Márquez R.J., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | Á. Galán-Relaño | |
dc.contributor.contactperson | Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain | |
dc.contributor.contactperson | email: agalanr12@gmail.com | |
dc.identifier.doi | 10.3390/ani14091347 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | 1347 | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192957341&doi=10.3390%2fani14091347&partnerID=40&md5=f79caa87c2c92de6a083fcb0cdf19211 | |
dc.relation.citationvolume | 14 | |
dc.relation.iscitedby | 0 | |
dc.relation.references | Hasan M., Wang J., Ahn J., Ciprofloxacin and Tetracycline Resistance Cause Collateral Sensitivity to Aminoglycosides in Salmonella Typhimurium, Antibiotics, 12, (2023) | |
dc.relation.references | Uddin T.M., Chakraborty A.J., Khusro A., Zidan B.R.M., Mitra S., Emran T.B., Dhama K., Ripon M.K.H., Gajdacs M., Sahibzada M.U.K., Et al., Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects, J. Infect. Public Health, 14, pp. 1750-1766, (2021) | |
dc.relation.references | Dawan J., Ahn J., Assessment of cooperative antibiotic resistance of Salmonella Typhimurium within heterogeneous population, Microb. Pathog, 157, (2021) | |
dc.relation.references | Roope L.S.J., Smith R.D., Pouwels K.B., Buchanan J., Abel L., Eibich P., Butler C.C., Tan P.S., Sarah Walker A., Robotham J.V., Et al., The challenge of antimicrobial resistance: What economics can contribute, Science, 364, (2019) | |
dc.relation.references | Murugaiyan J., Anand Kumar P., Rao G.S., Iskandar K., Hawser S., Hays J.P., Mohsen Y., Adukkadukkam S., Awuah W.A., Jose R.A.M., Et al., Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics, Antibiotics, 11, (2022) | |
dc.relation.references | Chouhan S., Sharma K., Guleria S., Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives, Medicines, 4, (2017) | |
dc.relation.references | Fadli M., Chevalier J., Saad A., Mezrioui N.E., Hassani L., Pages J.M., Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria, Int. J. Antimicrob. Agents, 38, pp. 325-330, (2011) | |
dc.relation.references | Kon K.V., Rai M.K., Plant essential oils and their constituents in coping with multidrug-resistant bacteria, Expert Rev. Anti. Infect. Ther, 10, pp. 775-790, (2012) | |
dc.relation.references | Yap P.S.X., Yiap B.C., Ping H.C., Lim S.H.E., Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance, Open Microbiol. J, 8, pp. 6-14, (2014) | |
dc.relation.references | Solarte A.L., Astorga R.J., Aguiar F., Galan-Relano A., Maldonado A., Huerta B., Combination of Antimicrobials and Essential Oils as an Alternative for the Control of Salmonella enterica Multiresistant Strains Related to Foodborne Disease, Foodborne Pathog. Dis, 14, pp. 558-563, (2017) | |
dc.relation.references | Burt S., Essential oils: Their antibacterial properties and potential applications in foods-A review, Int. J. Food Microbiol, 94, pp. 223-253, (2004) | |
dc.relation.references | Bakkali F., Averbeck S., Averbeck D., Idaomar M., Biological effects of essential oils-A review, Food Chem. Toxicol, 46, pp. 446-475, (2008) | |
dc.relation.references | Carson C.F., Hammer K.A., Chemistry and Bioactivity of Essential Oils, Lipids and Essential Oils as Antimicrobial Agents, pp. 203-238, (2011) | |
dc.relation.references | Diaz-Sanchez S., D'Souza D., Biswas D., Hanning I., Botanical alternatives to antibiotics for use in organic poultry production, Poult. Sci, 94, pp. 1419-1430, (2015) | |
dc.relation.references | Dusan F., Marian S., Katarina D., Dobroslava B., Essential oils-their antimicrobial activity against Escherichia coli and effect on intestinal cell viability, Toxicol. Vitr, 20, pp. 1435-1445, (2006) | |
dc.relation.references | Penalver P., Huerta B., Borge C., Astorga R., Romero R., Perea A., Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family, Apmis, 113, pp. 1-6, (2005) | |
dc.relation.references | Solarte A.L., Astorga R.J., De Aguiar F.C., De Frutos C., Barrero-Dominguez B., Huerta B., Susceptibility Distribution to Essential Oils of Salmonella enterica Strains Involved in Animal and Public Health and Comparison of the Typhimurium and Enteritidis Serotypes, J. Med. Food, 21, pp. 946-950, (2018) | |
dc.relation.references | Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V., Effect of essential oils on pathogenic bacteria, Pharmaceuticals, 6, pp. 1451-1474, (2013) | |
dc.relation.references | Langeveld W.T., Veldhuizen E.J.A., Burt S.A., Synergy between essential oil components and antibiotics: A review, Crit. Rev. Microbiol, 40, pp. 76-94, (2014) | |
dc.relation.references | Monte D.F.M., Tavares A.G., Albuquerque A.R., Sampaio F.C., Oliveira T.C.R.M., Franco O.L., Souza E.L., Magnani M., Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil, Front. Microbiol, 5, (2014) | |
dc.relation.references | Lu F., Ding Y.C., Ye X.Q., Ding Y.T., Antibacterial effect of cinnamon oil combined with thyme or clove oil, Agric. Sci. China, 10, pp. 1482-1487, (2011) | |
dc.relation.references | Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th Edition, (2024) | |
dc.relation.references | Si H., Hu J., Liu Z., Zeng Z.L., Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing Escherichia coli, FEMS Immunol. Med. Microbiol, 53, pp. 190-194, (2008) | |
dc.relation.references | Knezevic P., Aleksic V., Simin N., Svircev E., Petrovic A., Mimica-Dukic N., Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii, J. Ethnopharmacol, 178, pp. 125-136, (2016) | |
dc.relation.references | Fratini F., Mancini S., Turchi B., Friscia E., Pistelli L., Giusti G., Cerri D., A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains, Microbiol. Res, 195, pp. 11-17, (2017) | |
dc.relation.references | EUCAST Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents, Clin. Microbiol. Infect, 6, pp. 503-508, (2000) | |
dc.relation.references | Johny A.K., Hoagland T., Venkitanarayanan K., Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 to antibiotics, Foodborne Pathog. Dis, 7, pp. 1165-1170, (2010) | |
dc.relation.references | Palaniappan K., Holley R.A., Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria, Int. J. Food Microbiol, 140, pp. 164-168, (2010) | |
dc.relation.references | Darwish R.M., Aburjai T., Al-Khalil S., Mahafzah A., Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Staphylococcus aureus, J. Ethnopharmacol, 79, pp. 359-364, (2002) | |
dc.relation.references | Aburjai T., Darwish R.M., Al-Khalil S., Mahafzah A., Al-Abbadi A., Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Pseudomonas aeruginosa, J. Ethnopharmacol, 76, pp. 39-44, (2001) | |
dc.relation.references | Hemaiswarya S., Kruthiventi A.K., Doble M., Synergism between natural products and antibiotics against infectious diseases, Phytomedicine, 15, pp. 639-652, (2008) | |
dc.relation.references | Lauteri C., Maggio F., Serio A., Festino A.R., Paparella A., Vergara A., Overcoming Multidrug Resistance in Salmonella spp. Isolates Obtained from the Swine Food Chain by Using Essential Oils: An in vitro Study, Front. Microbiol, 12, (2022) | |
dc.relation.references | Santoyo S., Cavero S., Jaime L., Ibanez E., Senorans F.J., Reglero G., Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: Determination of optimal extraction parameters, J. Food Prot, 69, pp. 369-375, (2006) | |
dc.relation.references | Fabio A., Cermelli C., Fabio G., Nicoletti P., Quaglio P., Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections, Phyther. Res, 21, pp. 374-377, (2007) | |
dc.relation.references | Radha Krishnan K., Babuskin S., Azhagu Saravana Babu P., Sasikala M., Sabina K., Archana G., Sivarajan M., Sukumar M., Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat, Int. J. Food Microbiol, 171, pp. 32-40, (2014) | |
dc.relation.references | Slamenova D., Horvathova E., Wsolova L., Sramkova M., Navarova J., Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines, Mutat. Res. Genet. Toxicol. Environ. Mutagen, 677, pp. 46-52, (2009) | |
dc.relation.references | Llana-Ruiz-Cabello M., Maisanaba S., Puerto M., Prieto A.I., Pichardo S., Moyano R., Gonzalez-Perez J.A., Camean A.M., Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay, Food Chem. Toxicol, 98, pp. 240-250, (2016) | |
dc.relation.references | Llana-Ruiz-Cabello M., Maisanaba S., Puerto M., Pichardo S., Jos A., Moyano R., Camean A.M., A subchronic 90-day oral toxicity study of Origanum vulgare essential oil in rats, Food Chem. Toxicol, 101, pp. 36-47, (2017) | |
dc.relation.references | Rojas-Armas J., Arroyo-Acevedo J., Ortiz-Sanchez M., Palomino-Pacheco M., Castro-Luna A., Ramos-Cevallos N., Justil-Guerrero H., Hilario-Vargas J., Herrera-Calderon O., Acute and repeated 28-day oral dose toxicity studies of Thymus vulgaris L. essential oil in rats, Toxicol. Res, 35, pp. 225-232, (2019) | |
dc.relation.references | Sharififar F., Moshafi M.H., Dehghan-Nudehe G., Ameri A., Alishahi F., Pourhemati A., Bioassay screening of the essential oil and various extracts from 4 spices medicinal plants, Pak. J. Pharm. Sci, 22, pp. 317-322, (2009) | |
dc.relation.references | Bampidis V., Azimonti G., Bastos M.D.L., Christensen H., Dusemund B., Kouba M., Kos Durjava M., Lopez-Alonso M., Lopez Puente S., Marcon F., Et al., Safety of an essential oil from Origanum vulgare subsp. hirtum letsw. var. Vulkan when used as a sensory additive in feed for all animal species, EFSA J, 17, (2019) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | antimicrobial resistance | |
dc.subject.keywords | essential oils (EOs) | |
dc.subject.keywords | interaction | |
dc.subject.keywords | MDR | |
dc.subject.keywords | synergism | |
dc.subject.keywords | agar | |
dc.subject.keywords | antibiotic agent | |
dc.subject.keywords | carvacrol | |
dc.subject.keywords | caryophyllene | |
dc.subject.keywords | cinnamaldehyde | |
dc.subject.keywords | essential oil | |
dc.subject.keywords | eugenol | |
dc.subject.keywords | gentamicin | |
dc.subject.keywords | linalool | |
dc.subject.keywords | oxytetracycline | |
dc.subject.keywords | terpinene | |
dc.subject.keywords | tetracycline | |
dc.subject.keywords | tetracycline derivative | |
dc.subject.keywords | thymol | |
dc.subject.keywords | thymoquinone | |
dc.subject.keywords | Thymus vulgaris extract | |
dc.subject.keywords | agar diffusion | |
dc.subject.keywords | animal model | |
dc.subject.keywords | antagonistic effect | |
dc.subject.keywords | antibacterial activity | |
dc.subject.keywords | antibiotic resistance | |
dc.subject.keywords | antibiotic sensitivity | |
dc.subject.keywords | antifungal activity | |
dc.subject.keywords | antimicrobial activity | |
dc.subject.keywords | Article | |
dc.subject.keywords | bacterial growth | |
dc.subject.keywords | bacterial strain | |
dc.subject.keywords | bactericidal activity | |
dc.subject.keywords | bacterium | |
dc.subject.keywords | biofilm | |
dc.subject.keywords | Cinnamomum zeylanicum | |
dc.subject.keywords | cinnamon | |
dc.subject.keywords | clove | |
dc.subject.keywords | controlled study | |
dc.subject.keywords | death | |
dc.subject.keywords | drug activity | |
dc.subject.keywords | drug | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.spa | Artículo científico | |
dc.relation.citationissue | 9 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]