Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorHuerta Lorenzo B.
dc.contributor.authorGalán-Relaño Á.
dc.contributor.authorBarba-Sánchez E.
dc.contributor.authorRomero-Salmoral A.
dc.contributor.authorSolarte Portilla A.L.
dc.contributor.authorGómez-Gascón L.
dc.contributor.authorAstorga Márquez R.J.
dc.date.accessioned2024-12-02T20:15:37Z
dc.date.available2024-12-02T20:15:37Z
dc.date.issued2024
dc.identifier.issn20762615
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28925
dc.description.abstractTetracyclines have a high resistance percentage in Salmonella spp. of both human and animal origin. Essential oils, such as cinnamon (Cinnamomum zeylanicum), clove (Eugenia caryophyllata), oregano (Origanum vulgare), and red thyme (Thymus zygis), have shown bactericidal activity against this bacterium. However, in many cases, the minimum inhibitory concentration (MIC) exceeds the cytotoxicity limits. The objective of this study was to assess the in vitro efficacy of combining oxytetracycline with essential these oils against field multidrug-resistant (MDR) Salmonella enterica strains. The MIC of each product was determined using the broth microdilution method. The interaction was evaluated using the checkerboard method, by means of the fractional inhibitory concentration index (FICindex) determination. The results showed a positive interaction (synergy and additivity) between oxytetracycline and the four oils tested, resulting in a reduction in both products’ MICs by 2 to 4 times their initial value, in the case of oils, and by 2 to 1024 times in the case of the antibiotic. The combination of oxytetracycline and cinnamon achieved the best results (FICindex 0.5), with a decrease in the antibiotic effective concentration to below the sensitivity threshold (MIC of the combined oxytetracycline 0.5 µg/mL). There was no antagonistic effect in any case, although differences in response were observed depending on the bacterial strain. The results of this study suggest that combining oxytetracycline with cinnamon oil could be an effective alternative for controlling tetracycline-resistant strains of Salmonella. However, its individual use should be further evaluated through in vitro susceptibility tests. © 2024 by the authors.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceAnimals
dc.sourceAnimals
dc.sourceScopus
dc.titlePotentiation of the Antimicrobial Effect of Oxytetracycline Combined with Cinnamon, Clove, Oregano, and Red Thyme Essential Oils against MDR Salmonella enterica Strains
datacite.contributorAnimal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain
datacite.contributorZoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain
datacite.contributorMariana University, Calle 18 No. 34-104 Pasto (N), San Juan de Pasto, 52001, Colombia
datacite.contributorHuerta Lorenzo B., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain
datacite.contributorGalán-Relaño Á., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain
datacite.contributorBarba-Sánchez E., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain
datacite.contributorRomero-Salmoral A., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain
datacite.contributorSolarte Portilla A.L., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Mariana University, Calle 18 No. 34-104 Pasto (N), San Juan de Pasto, 52001, Colombia
datacite.contributorGómez-Gascón L., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain
datacite.contributorAstorga Márquez R.J., Animal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain, Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, 14014, Spain
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonÁ. Galán-Relaño
dc.contributor.contactpersonAnimal Health Department, Veterinary Faculty, University of Cordoba, Cordoba, 14014, Spain
dc.contributor.contactpersonemail: agalanr12@gmail.com
dc.identifier.doi10.3390/ani14091347
dc.identifier.instnameUniversidad Mariana
dc.identifier.local1347
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85192957341&doi=10.3390%2fani14091347&partnerID=40&md5=f79caa87c2c92de6a083fcb0cdf19211
dc.relation.citationvolume14
dc.relation.iscitedby0
dc.relation.referencesHasan M., Wang J., Ahn J., Ciprofloxacin and Tetracycline Resistance Cause Collateral Sensitivity to Aminoglycosides in Salmonella Typhimurium, Antibiotics, 12, (2023)
dc.relation.referencesUddin T.M., Chakraborty A.J., Khusro A., Zidan B.R.M., Mitra S., Emran T.B., Dhama K., Ripon M.K.H., Gajdacs M., Sahibzada M.U.K., Et al., Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects, J. Infect. Public Health, 14, pp. 1750-1766, (2021)
dc.relation.referencesDawan J., Ahn J., Assessment of cooperative antibiotic resistance of Salmonella Typhimurium within heterogeneous population, Microb. Pathog, 157, (2021)
dc.relation.referencesRoope L.S.J., Smith R.D., Pouwels K.B., Buchanan J., Abel L., Eibich P., Butler C.C., Tan P.S., Sarah Walker A., Robotham J.V., Et al., The challenge of antimicrobial resistance: What economics can contribute, Science, 364, (2019)
dc.relation.referencesMurugaiyan J., Anand Kumar P., Rao G.S., Iskandar K., Hawser S., Hays J.P., Mohsen Y., Adukkadukkam S., Awuah W.A., Jose R.A.M., Et al., Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics, Antibiotics, 11, (2022)
dc.relation.referencesChouhan S., Sharma K., Guleria S., Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives, Medicines, 4, (2017)
dc.relation.referencesFadli M., Chevalier J., Saad A., Mezrioui N.E., Hassani L., Pages J.M., Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria, Int. J. Antimicrob. Agents, 38, pp. 325-330, (2011)
dc.relation.referencesKon K.V., Rai M.K., Plant essential oils and their constituents in coping with multidrug-resistant bacteria, Expert Rev. Anti. Infect. Ther, 10, pp. 775-790, (2012)
dc.relation.referencesYap P.S.X., Yiap B.C., Ping H.C., Lim S.H.E., Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance, Open Microbiol. J, 8, pp. 6-14, (2014)
dc.relation.referencesSolarte A.L., Astorga R.J., Aguiar F., Galan-Relano A., Maldonado A., Huerta B., Combination of Antimicrobials and Essential Oils as an Alternative for the Control of Salmonella enterica Multiresistant Strains Related to Foodborne Disease, Foodborne Pathog. Dis, 14, pp. 558-563, (2017)
dc.relation.referencesBurt S., Essential oils: Their antibacterial properties and potential applications in foods-A review, Int. J. Food Microbiol, 94, pp. 223-253, (2004)
dc.relation.referencesBakkali F., Averbeck S., Averbeck D., Idaomar M., Biological effects of essential oils-A review, Food Chem. Toxicol, 46, pp. 446-475, (2008)
dc.relation.referencesCarson C.F., Hammer K.A., Chemistry and Bioactivity of Essential Oils, Lipids and Essential Oils as Antimicrobial Agents, pp. 203-238, (2011)
dc.relation.referencesDiaz-Sanchez S., D'Souza D., Biswas D., Hanning I., Botanical alternatives to antibiotics for use in organic poultry production, Poult. Sci, 94, pp. 1419-1430, (2015)
dc.relation.referencesDusan F., Marian S., Katarina D., Dobroslava B., Essential oils-their antimicrobial activity against Escherichia coli and effect on intestinal cell viability, Toxicol. Vitr, 20, pp. 1435-1445, (2006)
dc.relation.referencesPenalver P., Huerta B., Borge C., Astorga R., Romero R., Perea A., Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family, Apmis, 113, pp. 1-6, (2005)
dc.relation.referencesSolarte A.L., Astorga R.J., De Aguiar F.C., De Frutos C., Barrero-Dominguez B., Huerta B., Susceptibility Distribution to Essential Oils of Salmonella enterica Strains Involved in Animal and Public Health and Comparison of the Typhimurium and Enteritidis Serotypes, J. Med. Food, 21, pp. 946-950, (2018)
dc.relation.referencesNazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V., Effect of essential oils on pathogenic bacteria, Pharmaceuticals, 6, pp. 1451-1474, (2013)
dc.relation.referencesLangeveld W.T., Veldhuizen E.J.A., Burt S.A., Synergy between essential oil components and antibiotics: A review, Crit. Rev. Microbiol, 40, pp. 76-94, (2014)
dc.relation.referencesMonte D.F.M., Tavares A.G., Albuquerque A.R., Sampaio F.C., Oliveira T.C.R.M., Franco O.L., Souza E.L., Magnani M., Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil, Front. Microbiol, 5, (2014)
dc.relation.referencesLu F., Ding Y.C., Ye X.Q., Ding Y.T., Antibacterial effect of cinnamon oil combined with thyme or clove oil, Agric. Sci. China, 10, pp. 1482-1487, (2011)
dc.relation.referencesPerformance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th Edition, (2024)
dc.relation.referencesSi H., Hu J., Liu Z., Zeng Z.L., Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing Escherichia coli, FEMS Immunol. Med. Microbiol, 53, pp. 190-194, (2008)
dc.relation.referencesKnezevic P., Aleksic V., Simin N., Svircev E., Petrovic A., Mimica-Dukic N., Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii, J. Ethnopharmacol, 178, pp. 125-136, (2016)
dc.relation.referencesFratini F., Mancini S., Turchi B., Friscia E., Pistelli L., Giusti G., Cerri D., A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains, Microbiol. Res, 195, pp. 11-17, (2017)
dc.relation.referencesEUCAST Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents, Clin. Microbiol. Infect, 6, pp. 503-508, (2000)
dc.relation.referencesJohny A.K., Hoagland T., Venkitanarayanan K., Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 to antibiotics, Foodborne Pathog. Dis, 7, pp. 1165-1170, (2010)
dc.relation.referencesPalaniappan K., Holley R.A., Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria, Int. J. Food Microbiol, 140, pp. 164-168, (2010)
dc.relation.referencesDarwish R.M., Aburjai T., Al-Khalil S., Mahafzah A., Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Staphylococcus aureus, J. Ethnopharmacol, 79, pp. 359-364, (2002)
dc.relation.referencesAburjai T., Darwish R.M., Al-Khalil S., Mahafzah A., Al-Abbadi A., Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Pseudomonas aeruginosa, J. Ethnopharmacol, 76, pp. 39-44, (2001)
dc.relation.referencesHemaiswarya S., Kruthiventi A.K., Doble M., Synergism between natural products and antibiotics against infectious diseases, Phytomedicine, 15, pp. 639-652, (2008)
dc.relation.referencesLauteri C., Maggio F., Serio A., Festino A.R., Paparella A., Vergara A., Overcoming Multidrug Resistance in Salmonella spp. Isolates Obtained from the Swine Food Chain by Using Essential Oils: An in vitro Study, Front. Microbiol, 12, (2022)
dc.relation.referencesSantoyo S., Cavero S., Jaime L., Ibanez E., Senorans F.J., Reglero G., Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: Determination of optimal extraction parameters, J. Food Prot, 69, pp. 369-375, (2006)
dc.relation.referencesFabio A., Cermelli C., Fabio G., Nicoletti P., Quaglio P., Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections, Phyther. Res, 21, pp. 374-377, (2007)
dc.relation.referencesRadha Krishnan K., Babuskin S., Azhagu Saravana Babu P., Sasikala M., Sabina K., Archana G., Sivarajan M., Sukumar M., Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat, Int. J. Food Microbiol, 171, pp. 32-40, (2014)
dc.relation.referencesSlamenova D., Horvathova E., Wsolova L., Sramkova M., Navarova J., Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines, Mutat. Res. Genet. Toxicol. Environ. Mutagen, 677, pp. 46-52, (2009)
dc.relation.referencesLlana-Ruiz-Cabello M., Maisanaba S., Puerto M., Prieto A.I., Pichardo S., Moyano R., Gonzalez-Perez J.A., Camean A.M., Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay, Food Chem. Toxicol, 98, pp. 240-250, (2016)
dc.relation.referencesLlana-Ruiz-Cabello M., Maisanaba S., Puerto M., Pichardo S., Jos A., Moyano R., Camean A.M., A subchronic 90-day oral toxicity study of Origanum vulgare essential oil in rats, Food Chem. Toxicol, 101, pp. 36-47, (2017)
dc.relation.referencesRojas-Armas J., Arroyo-Acevedo J., Ortiz-Sanchez M., Palomino-Pacheco M., Castro-Luna A., Ramos-Cevallos N., Justil-Guerrero H., Hilario-Vargas J., Herrera-Calderon O., Acute and repeated 28-day oral dose toxicity studies of Thymus vulgaris L. essential oil in rats, Toxicol. Res, 35, pp. 225-232, (2019)
dc.relation.referencesSharififar F., Moshafi M.H., Dehghan-Nudehe G., Ameri A., Alishahi F., Pourhemati A., Bioassay screening of the essential oil and various extracts from 4 spices medicinal plants, Pak. J. Pharm. Sci, 22, pp. 317-322, (2009)
dc.relation.referencesBampidis V., Azimonti G., Bastos M.D.L., Christensen H., Dusemund B., Kouba M., Kos Durjava M., Lopez-Alonso M., Lopez Puente S., Marcon F., Et al., Safety of an essential oil from Origanum vulgare subsp. hirtum letsw. var. Vulkan when used as a sensory additive in feed for all animal species, EFSA J, 17, (2019)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsantimicrobial resistance
dc.subject.keywordsessential oils (EOs)
dc.subject.keywordsinteraction
dc.subject.keywordsMDR
dc.subject.keywordssynergism
dc.subject.keywordsagar
dc.subject.keywordsantibiotic agent
dc.subject.keywordscarvacrol
dc.subject.keywordscaryophyllene
dc.subject.keywordscinnamaldehyde
dc.subject.keywordsessential oil
dc.subject.keywordseugenol
dc.subject.keywordsgentamicin
dc.subject.keywordslinalool
dc.subject.keywordsoxytetracycline
dc.subject.keywordsterpinene
dc.subject.keywordstetracycline
dc.subject.keywordstetracycline derivative
dc.subject.keywordsthymol
dc.subject.keywordsthymoquinone
dc.subject.keywordsThymus vulgaris extract
dc.subject.keywordsagar diffusion
dc.subject.keywordsanimal model
dc.subject.keywordsantagonistic effect
dc.subject.keywordsantibacterial activity
dc.subject.keywordsantibiotic resistance
dc.subject.keywordsantibiotic sensitivity
dc.subject.keywordsantifungal activity
dc.subject.keywordsantimicrobial activity
dc.subject.keywordsArticle
dc.subject.keywordsbacterial growth
dc.subject.keywordsbacterial strain
dc.subject.keywordsbactericidal activity
dc.subject.keywordsbacterium
dc.subject.keywordsbiofilm
dc.subject.keywordsCinnamomum zeylanicum
dc.subject.keywordscinnamon
dc.subject.keywordsclove
dc.subject.keywordscontrolled study
dc.subject.keywordsdeath
dc.subject.keywordsdrug activity
dc.subject.keywordsdrug
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue9


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem