Show simple item record

[Comparativa entre CRISP-DMy SEMMA para la limpieza de datos en productos MODIS en un estudio de cambio de cobertura y uso del suelo:]

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorPalacios H.J.G.
dc.contributor.authorPantoja G.A.H.
dc.contributor.authorNavarro A.A.M.
dc.contributor.authorPuetaman I.M.A.
dc.contributor.authorToledo R.A.J.
dc.contributor.editorJacome V I.D.
dc.contributor.editorErazo M J.P.
dc.contributor.other11th IEEE Colombian Computing Conference, CCC 2016
dc.date.accessioned2024-12-02T20:15:37Z
dc.date.available2024-12-02T20:15:37Z
dc.date.issued2016
dc.identifier.isbn978-150902966-2
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28924
dc.description.abstractThe studies about land use and land cover change allows through vegetation indices, determine if a field in terms of coverage is better or worse. However the validity and reliability of the study depends on the quality of the data used for it, for this reason to ensure the quality of the data, is suggested implement a data mining methodology, however for such studies, it is difficult to identify the methodology to implement, given this situation is necessary to make a comparison between two very popular data mining methodologies. For the case study were applied the CRISP-DM and SEMMA methodologies, thoroughly following each stage, general task, specific task and activity according to the official documentation. Thus it is began with the understanding the problem of the case study, proposing data mining goals, data understanding and finally, with the cleaning process and the construction of the data repository as detailed in this article. As for the download, reprojection transformation, cleaning and storage of products MODIS, were used in all cases R and Python scripts to optimize the process. © 2016 IEEE.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.source2016 IEEE 11th Colombian Computing Conference, CCC 2016 - Conference Proceedings
dc.sourceIEEE Colombian Comput. Conf., CCC - Conf. Proc.
dc.sourceScopus
dc.titleComparative between CRISP-DM and SEMMA for data cleaning of MODIS products in a study of land use and land cover change
dc.title[Comparativa entre CRISP-DMy SEMMA para la limpieza de datos en productos MODIS en un estudio de cambio de cobertura y uso del suelo:]
datacite.contributorFacultad de Ingenieriá, Universidad Mariana, Pasto, Colombia
datacite.contributorFacultad de Ciencias Naturals, Universidad de Narinõ, Pasto, Colombia
datacite.contributorPalacios H.J.G., Facultad de Ingenieriá, Universidad Mariana, Pasto, Colombia
datacite.contributorPantoja G.A.H., Facultad de Ingenieriá, Universidad Mariana, Pasto, Colombia
datacite.contributorNavarro A.A.M., Facultad de Ingenieriá, Universidad Mariana, Pasto, Colombia
datacite.contributorPuetaman I.M.A., Facultad de Ciencias Naturals, Universidad de Narinõ, Pasto, Colombia
datacite.contributorToledo R.A.J., Facultad de Ingenieriá, Universidad Mariana, Pasto, Colombia
datacite.contributor11th IEEE Colombian Computing Conference, CCC 2016
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.sponsorFundacion Universitaria de Popayan (FUP)
dc.contributor.sponsorInstitute of Electrical and Electronic Engineers - Colombian Section
dc.identifier.doi10.1109/ColumbianCC.2016.7750789
dc.identifier.instnameUniversidad Mariana
dc.identifier.local7750789
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85007006770&doi=10.1109%2fColumbianCC.2016.7750789&partnerID=40&md5=8691129414947c4cf1e6759dfd7f542b
dc.relation.conferencedate27 September 2016 through 30 September 2016
dc.relation.conferenceplacePopayan
dc.relation.iscitedby3
dc.relation.referencesTorres V., Paredes P., Rial P., Análisis de la Anomaliá Del Índice de Vegetación Mejorado (EVI) Del Sensor MODIS para la Provincia de Santa Cruz, pp. 1-2, (2010)
dc.relation.referencesSolano R., Didan K., Barretoy M., Huete A., MODIS Vegetation Index User's Guide (MOD13 Series)
dc.relation.referencesVazquez P., Adema E., Fernandez B., Dinámica de la Fenologiá de la Vegetación A Partir de Series Temporales de NDVI de Largo Plazo en la Provincia de la Pampa, pp. 1-2, (2013)
dc.relation.referencesFrancois J., Aplicaciones Del Sensor MODIS para El Monitoreo Del Territorio, pp. 16-98, (2011)
dc.relation.referencesChapman P., CRISP-DM Step by Step Data Mining, (1999)
dc.relation.referencesSolving Business Problems Using SAS® Enterprise Miner™ Software, (1998)
dc.relation.referencesArmenteras D., Gonzalezy F., Franco K., A. Distribución geográfica y temporal de incendios en Colombia utilizando datos de anomaliás térmicas, Bogotá, 16, (2009)
dc.relation.referencesGarcia J., Remote Mining: Aplicando mineriá de datos a teledetección sobre LIDAR, Espanã, 86, (2010)
dc.relation.referencesSanchez A., Etter A., Clark M., Land Cover Change in Colombia: Surprising Forest Recovery Trends between 2001 and 2010, 16, (2012)
dc.relation.referencesCamargoy H., Silva M., Dos caminos en la búsqueda de patrones por medio de mineriá de datos: SEMMA y CRISP, Rev Tecnol.-Journal of Technology, 9, 1, (2011)
dc.relation.referencesMoine J., Gordillo S., Haedo A., Análisis comparativo de metodologiás para la gestión de proyectos de mineriá de datos, CACIC Argentina, 8, (2011)
dc.relation.referencesAzevedoy A., Santos M., KDD, SEMMA and CRISP-DM a parallel overview, AIDIS Amsterdam, 5, (2008)
dc.relation.referencesNaimi B., ModisDownload: An R function to download, mosaic, and reproject the MODIS images, R-GIS, (2015)
dc.relation.referencesMODIS Reprojection Tool User's Manual, pp. 42-54, (2011)
dc.relation.referencesEstudio general de suelos y zonificación de tierras Departamento de Narinõ, Capitulo 8: Zonificación Del Medio Biofísico, pp. 251-253, (2015)
dc.relation.referencesGolicher D., Loading Modis NDVI Time Series into PostGIS Raster, (2012)
dc.relation.referencesMulleadyy C., Barrera D., Estimación de la tasa de evapotranspiración a partir de datos satelitales 2013, Meteorologica, 38, 1, (2013)
dc.relation.referencesLydholm M., Geographic Information Systems, (2015)
dc.relation.referencesSVN Revision 14671, 7, pp. 27-29, (2015)
dc.relation.referencesThe PostgreSQL Global Development Group, 5, (2015)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsCRISP-DM
dc.subject.keywordsData cleaning
dc.subject.keywordsData mining
dc.subject.keywordsData repository
dc.subject.keywordsEVI
dc.subject.keywordsMODIS
dc.subject.keywordsNDVI
dc.subject.keywordsSEMMA
dc.subject.keywordsVegetation Index
dc.subject.keywordsCleaning
dc.subject.keywordsData mining
dc.subject.keywordsLand use
dc.subject.keywordsRadiometers
dc.subject.keywordsVegetation
dc.subject.keywordsCRISP-DM
dc.subject.keywordsData cleaning
dc.subject.keywordsData repositories
dc.subject.keywordsMODIS
dc.subject.keywordsNDVI
dc.subject.keywordsSEMMA
dc.subject.keywordsVegetation index
dc.subject.keywordsDigital storage
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record