Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorRiascos A.P.
dc.contributor.authorMateos J.L.
dc.date.accessioned2024-12-02T20:15:37Z
dc.date.available2024-12-02T20:15:37Z
dc.date.issued2017
dc.identifier.issn19326203
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28923
dc.description.abstractThere is a burst of work on human mobility and encounter networks. However, the connection between these two important fields just begun recently. It is clear that both are closely related: Mobility generates encounters, and these encounters might give rise to contagion phenomena or even friendship. We model a set of random walkers that visit locations in space following a strategy akin to Lévy flights. We measure the encounters in space and time and establish a link between walkers after they coincide several times. This generates a temporal network that is characterized by global quantities. We compare this dynamics with real data for two cities: New York City and Tokyo. We use data from the location-based social network Foursquare and obtain the emergent temporal encounter network, for these two cities, that we compare with our model. We found long-range (Lévy-like) distributions for traveled distances and time intervals that characterize the emergent social network due to human mobility. Studying this connection is important for several fields like epidemics, social influence, voting, contagion models, behavioral adoption and diffusion of ideas. © 2017 Riascos, Mateos. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPublic Library of Science
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourcePLoS ONE
dc.sourcePLoS ONE
dc.sourceScopus
dc.titleEmergence of encounter networks due to human mobility
datacite.contributorDepartment of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia
datacite.contributorInstituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
datacite.contributorRiascos A.P., Department of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia
datacite.contributorMateos J.L., Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonA.P. Riascos
dc.contributor.contactpersonDepartment of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia
dc.contributor.contactpersonemail: aaappprrr@gmail.com
dc.identifier.doi10.1371/journal.pone.0184532
dc.identifier.instnameUniversidad Mariana
dc.identifier.localPOLNC
dc.identifier.locale0184532
dc.identifier.pissn29023458
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85031002069&doi=10.1371%2fjournal.pone.0184532&partnerID=40&md5=4711cf5b6d752ec5b11afffd68130eb8
dc.relation.citationvolume12
dc.relation.iscitedby39
dc.relation.referencesNewman M.E.J., Networks: An Introduction, (2010)
dc.relation.referencesBarrat A., Barthelemy M., Vespignani A., Dynamical Processes on Complex Networks, (2008)
dc.relation.referencesBaronchelli A., Radicchi F., Lévy flights in human behavior and cognition, Chaos, Solitons & Fractals, 56, pp. 101-105, (2013)
dc.relation.referencesZaburdaev V., Denisov S., Klafter J., Lévy walks, Rev Mod Phys, 87, pp. 483-530, (2015)
dc.relation.referencesRamos-Fernandez G., Mateos J.L., Miramontes O., Cocho G., Larralde H., Ayala-Orozco B., Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi), Behav Ecol Sociobiol, 55, 3, pp. 223-230, (2004)
dc.relation.referencesBoyer D., Ramos-Fernandez G., Miramontes O., Mateos J.L., Cocho G., Larralde H., Et al., Scale-free foraging by primates emerges from their interaction with a complex environment, Proc R Soc B, 273, 1595, pp. 1743-1750, (2006)
dc.relation.referencesViswanathan G.M., Da Luz M.G.E., Raposo E.P., Stanley H.E., The Physics of Foraging, (2011)
dc.relation.referencesBrockmann D., Hufnagel L., Geisel T., The scaling laws of human travel, Nature, 439, pp. 462-465, (2006)
dc.relation.referencesBrown C., Liebovitch L., Glendon R., Lévy Flights in Dobe Ju/’hoansi Foraging Patterns, Human Ecology, 35, pp. 129-138, (2007)
dc.relation.referencesGonzalez M.C., Hidalgo C.A., Barabasi A.L., Understanding individual human mobility patterns, Nature, 453, pp. 779-782, (2008)
dc.relation.referencesSong C., Koren T., Wang P., Barabasi A.L., Modelling the scaling properties of human mobility, Nat Phys, 6, 10, pp. 818-823, (2010)
dc.relation.referencesRhee I., Shin M., Hong S., Lee K., Kim S.J., Chong S., On the Levy-Walk Nature of Human Mobility, IEEE/ ACM Trans Netw, 19, 3, pp. 630-643, (2011)
dc.relation.referencesRaichlen D.A., Wood B.M., Gordon A.D., Mabulla A.Z.P., Marlowe F.W., Pontzer H., Evidence of Lévy walk foraging patterns in human hunter–gatherers, Proc Natl Acad Sci USA, 111, 2, pp. 728-733, (2014)
dc.relation.referencesKuhn S.L., Raichlen D.A., Clark A.E., What moves us? How mobility and movement are at the center of human evolution, Evol Athropol, 25, 3, pp. 86-97, (2016)
dc.relation.referencesBatty M., The New Science of Cities, (2013)
dc.relation.referencesSong C., Qu Z., Blumm N., Barabasi A.L., Limits of Predictability in Human Mobility, Science, 327, 5968, pp. 1018-1021, (2010)
dc.relation.referencesSimini F., Gonzalez M.C., Maritan A., Barabasi A.L., A universal model for mobility and migration patterns, Nature, 484, 7392, pp. 96-100, (2012)
dc.relation.referencesNoulas A., Scellato S., Lambiotte R., Pontil M., Mascolo C., A Tale of Many Cities: Universal Patterns in Human Urban Mobility, Plos ONE, 7, 5, (2012)
dc.relation.referencesPan W., Ghoshal G., Krumme C., Cebrian M., Pentland A., Urban characteristics attributable to density-driven tie formation, Nat Commun, 4, (2013)
dc.relation.referencesPappalardo L., Simini F., Rinzivillo S., Pedreschi D., Giannotti F., Barabasi A.L., Returners and explorers dichotomy in human mobility, Nat Commun, 6, (2015)
dc.relation.referencesLouail T., Lenormand M., Picornell M., Garcia Cantu O., Herranz R., Frias-Martinez E., Et al., Uncovering the spatial structure of mobility networks, Nat Commun, 6, (2015)
dc.relation.referencesGallotti R., Porter M.A., Barthelemy M., Lost in transportation: Information measures and cognitive limits in multilayer navigation, Sci Adv, 2, (2016)
dc.relation.referencesDanon L., House T.A., Read J.M., Keeling M.J., Social encounter networks: Collective properties and disease transmission, J R Soc Interface, 9, 76, pp. 2826-2833, (2012)
dc.relation.referencesGauvin L., Panisson A., Cattuto C., Barrat A., Activity clocks: Spreading dynamics on temporal networks of human contact, Sci Rep, 3, (2013)
dc.relation.referencesGenois M., Vestergaard C.L., Cattuto C., Barrat A., Compensating for population sampling in simulations of epidemic spread on temporal contact networks, Nat Commun, 6, (2015)
dc.relation.referencesPastor-Satorras R., Castellano C., Van Mieghem P., Vespignani A., Epidemic processes in complex networks, Rev Mod Phys, 87, pp. 925-979, (2015)
dc.relation.referencesBorge-Holthoefer J., Perra N., Goncalves B., Gonzalez-Bailon S., Arenas A., Moreno Y., Et al., The dynamics of information-driven coordination phenomena: A transfer entropy analysis, Sci Adv, 2, 4, (2016)
dc.relation.referencesDe Domenico M., Lima A., Gonzalez M.C., Arenas A., Personalized routing for multitudes in smart cities, EPJ Data Science, 4, 1, (2015)
dc.relation.referencesColak S., Lima A., Gonzalez M.C., Understanding congested travel in urban areas, Nat Commun, 7, (2016)
dc.relation.referencesCrandall D.J., Backstrom L., Cosley D., Suri S., Huttenlocher D., Kleinberg J., Inferring social ties from geographic coincidences, Proc Natl Acad Sci USA, 107, 52, pp. 22436-22441, (2010)
dc.relation.referencesCho E., Myers S.A., Leskovec J., Friendship and Mobility: User Movement in Location-based Social Networks, Proc 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’11, pp. 1082-1090, (2011)
dc.relation.referencesWang D., Pedreschi D., Song C., Giannotti F., Barabasi A.L., Human Mobility, Social Ties, and Link Prediction, Proc 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’11, pp. 1100-1108, (2011)
dc.relation.referencesSun L., Axhausen K.W., Lee D.H., Huang X., Understanding metropolitan patterns of daily encounters, Proc Natl Acad Sci USA, 110, 34, pp. 13774-13779, (2013)
dc.relation.referencesDomenico M.D., Lima A., Musolesi M., Interdependence and predictability of human mobility and social interactions, J Pervasive Mob Comput, 9, 6, pp. 798-807, (2013)
dc.relation.referencesGrabowicz P.A., Ramasco J.J., Goncalves B., Eguiluz V.M., Entangling Mobility and Interactions in Social Media, Plos ONE, 9, 3, (2014)
dc.relation.referencesSchlapfer M., Bettencourt L.M.A., Grauwin S., Raschke M., Claxton R., Smoreda Z., Et al., The scaling of human interactions with city size, J R Soc Interface, 11, 98, (2014)
dc.relation.referencesToole J.L., Herrera-Yaque C., Schneider C.M., Gonzalez M.C., Coupling human mobility and social ties, J R Soc Interface, 12, 105, (2015)
dc.relation.referencesDeville P., Song C., Eagle N., Blondel V.D., Barabasi A.L., Wang D., Scaling identity connects human mobility and social interactions, Proc Natl Acad Sci USA, 113, 26, pp. 7047-7052, (2016)
dc.relation.referencesSchneider C.M., Belik V., Couronne T., Smoreda Z., Gonzalez M.C., Unravelling daily human mobility motifs, J R Soc Interface, 10, 84, (2013)
dc.relation.referencesLouf R., Barthelemy M., How congestion shapes cities: From mobility patterns to scaling, Sci Rep, 4, (2014)
dc.relation.referencesLouail T., Lenormand M., Cantu Ros O.G., Picornell M., Herranz R., Frias-Martinez E., Et al., From mobile phone data to the spatial structure of cities, Sci Rep, 4, (2014)
dc.relation.referencesNoulas A., Shaw B., Lambiotte R., Mascolo C., Topological Properties and Temporal Dynamics of Place Networks in Urban Environments, Proceedings of The 24th International Conference on World Wide Web Companion. WWW’15 Companion, pp. 431-441, (2015)
dc.relation.referencesLenormand M., Goncalves B., Tugores A., Ramasco J.J., Human diffusion and city influence, J R Soc Interface, 12, 109, (2015)
dc.relation.referencesSim A., Yaliraki S.N., Barahona M., Stumpf M.P.H., Great cities look small, J R Soc Interface, 12, 109, (2015)
dc.relation.referencesSaramaki J., Moro E., From seconds to months: An overview of multi-scale dynamics of mobile telephone calls, Eur Phys J B, 88, 6, (2015)
dc.relation.referencesSerok N., Blumenfeld-Lieberthal E., A Simulation Model for Intra-Urban Movements, Plos ONE, 10, 7, (2015)
dc.relation.referencesZhao K., Musolesi M., Hui P., Rao W., Tarkoma S., Explaining the power-law distribution of human mobility through transportation modality decomposition, Sci Rep, 5, (2015)
dc.relation.referencesYan X.Y., Han X.P., Wang B.H., Zhou T., Diversity of individual mobility patterns and emergence of aggregated scaling laws, Sci Rep, 3, (2013)
dc.relation.referencesBarthelemy M., Spatial networks, Phys Rep, 499, 1-3, pp. 1-101, (2011)
dc.relation.referencesHossmann T., Spyropoulos T., Legendre F., A complex network analysis of human mobility, Proceeding of The IEEE Conference on Computer Communications Workshops (INFOCOM), pp. 876-881, (2011)
dc.relation.referencesYang S., Yang X., Zhang C., Spyrou E., Using social network theory for modeling human mobility, IEEE Network, 24, 5, pp. 6-13, (2010)
dc.relation.referencesYang L., Jiang H., Wang S., Wang L., Fang Y., Characterizing pairwise contact patterns in human contact networks, Ad Hoc Networks, 10, 3, pp. 524-535, (2012)
dc.relation.referencesZignani M., Gaito S., Rossi G., Extracting human mobility and social behavior from location-aware traces, Wirel Commun Mobile Comput, 13, 3, pp. 313-327, (2013)
dc.relation.referencesSun L., Axhausen K.W., Lee D.H., Cebrian M., Efficient detection of contagious outbreaks in massive metropolitan encounter networks, Sci Rep, 4, (2014)
dc.relation.referencesYang D., Zhang D., Zheng V.W., Yu Z., Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45, 1, pp. 129-142, (2015)
dc.relation.referencesBarrat A., Cattuto C., Colizza V., Gesualdo F., Isella L., Pandolfi E., Et al., Empirical temporal networks of face-to-face human interactions, Eur Phys J Special Topics, 222, 6, pp. 1295-1309, (2013)
dc.relation.referencesBelik V., Geisel T., Brockmann D., Natural Human Mobility Patterns and Spatial Spread of Infectious Diseases, Phys Rev X, 1, (2011)
dc.relation.referencesFournet J., Barrat A., Contact Patterns among High School Students, Plos ONE, 9, 9, (2014)
dc.relation.referencesMastrandrea R., Fournet J., Barrat A., Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys, Plos ONE, 10, 9, (2015)
dc.relation.referencesPan W., Sun G.Q., Jin Z., How demography-driven evolving networks impact epidemic transmission between communities, J Theor Biol, 382, pp. 309-319, (2015)
dc.relation.referencesFoursquare Dataset—dingqi Yang’s Homepage
dc.relation.referencesClauset A., Shalizi C.R., Newman M.E.J., Power-Law Distributions in Empirical Data, SIAM Rev, 51, 4, pp. 661-703, (2009)
dc.relation.referencesAlstott J., Bullmore E., Plenz D., Powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions, Plos ONE, 9, 1, (2014)
dc.relation.referencesBarabasi A.L., The origin of bursts and heavy tails in human dynamics, Nature, 435, (2005)
dc.relation.referencesCsardi G., Nepusz T., The igraph software package for complex network research, Interj Complex Syst, (2006)
dc.relation.referencesLiben-Nowell D., Novak J., Kumar R., Raghavan P., Tomkins A., Geographic routing in social networks, Proc Natl Acad Sci USA, 102, 33, pp. 11623-11628, (2005)
dc.relation.referencesDall J., Christensen M., Random geometric graphs, Phys Rev E, 66, (2002)
dc.relation.referencesEstrada E., Sheerin M., Random rectangular graphs, Phys Rev E, 91, (2015)
dc.relation.referencesRiascos A.P., Mateos J.L., Long-range navigation on complex networks using Lévy random walks, Phys Rev E, 86, (2012)
dc.relation.referencesRiascos A.P., Mateos J.L., Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights, Phys Rev E, 90, (2014)
dc.relation.referencesRiascos A.P., Mateos J.L., Fractional diffusion on circulant networks: Emergence of a dynamical small world, J Stat Mech, 2015, 7, (2015)
dc.relation.referencesRiascos A.P., Mateos J.L., Fractional quantum mechanics on networks: Long-range dynamics and quantum transport, Phys Rev E, 92, (2015)
dc.relation.referencesWeng T., Small M., Zhang J., Hui P., Lévy Walk Navigation in Complex Networks: A Distinct Relation between Optimal Transport Exponent and Network Dimension, Sci Rep, 5, (2015)
dc.relation.referencesEstrada E., Delvenne J.C., Hatano N., Mateos J.L., Metzler R., Riascos A.P., Et al., Random Multi-Hopper Model. Super-Fast Random Walks on Graphs, Journal of Complex Networks, (2017)
dc.relation.referencesHolme P., Saramaki J., Temporal networks, Phys Rep, 519, 3, pp. 97-125, (2012)
dc.relation.referencesHolme P., Modern temporal network theory: A colloquium, Eur Phys J B, 88, 9, (2015)
dc.relation.referencesHughes B.D., Random Walks, Random Walks and Random Environments, 1, (1996)
dc.relation.referencesZhang Z., Shan T., Chen G., Random walks on weighted networks, Phys Rev E, 87, (2013)
dc.relation.referencesLin Y., Zhang Z., Random walks in weighted networks with a perfect trap: An application of Laplacian spectra, Phys Rev E, 87, (2013)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsComputer Simulation
dc.subject.keywordsHuman Activities
dc.subject.keywordsHumans
dc.subject.keywordsInterpersonal Relations
dc.subject.keywordsModels, Theoretical
dc.subject.keywordsNew York City
dc.subject.keywordsPopulation Dynamics
dc.subject.keywordsTokyo
dc.subject.keywordsWalking
dc.subject.keywordsArticle
dc.subject.keywordscontrolled study
dc.subject.keywordsencounter group
dc.subject.keywordshuman
dc.subject.keywordsJapan
dc.subject.keywordsphysical mobility
dc.subject.keywordssocial network
dc.subject.keywordstravel
dc.subject.keywordsUnited States
dc.subject.keywordswalking
dc.subject.keywordscomputer simulation
dc.subject.keywordshuman activities
dc.subject.keywordshuman relation
dc.subject.keywordsNew York
dc.subject.keywordspopulation dynamics
dc.subject.keywordsstatistics and numerical data
dc.subject.keywordstheoretical model
dc.subject.keywordswalking
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue10


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem