Show simple item record

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorBrown S.K.
dc.contributor.authorCrosweller H.S.
dc.contributor.authorSparks R.S.J.
dc.contributor.authorCottrell E.
dc.contributor.authorDeligne N.I.
dc.contributor.authorGuerrero N.O.
dc.contributor.authorHobbs L.
dc.contributor.authorKiyosugi K.
dc.contributor.authorLoughlin S.C.
dc.contributor.authorSiebert L.
dc.contributor.authorTakarada S.
dc.date.accessioned2024-12-02T20:15:36Z
dc.date.available2024-12-02T20:15:36Z
dc.date.issued2014
dc.identifier.issn21915040
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28922
dc.description.abstractThe Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database contains data on 1,883 Quaternary eruption records of magnitude (M) 4 and above and is publically accessible online via the British Geological Survey. Spatial and temporal analysis of the data indicates that the record is incomplete and is thus biased. The recorded distribution of volcanoes is variable on a global scale, with three-quarters of all volcanoes with M ≥ 4 Quaternary activity located in the northern hemisphere and a quarter within Japan alone. The distribution of recorded eruptions does not strictly follow the spatial distribution of volcanoes and has distinct intra-regional variability, with about 40% of all recorded eruptions having occurred in Japan, reflecting in part the country's efforts devoted to comprehensive volcanic studies. The number of eruptions in LaMEVE decreases with increasing age, exemplified by the recording of 50% of all known Quaternary eruptions during the last 20,000 years. Historical dating is prevalent from 1450 AD to the present day, substantially improving record completeness. The completeness of the record also improves as magnitude increases. This is demonstrated by the calculation of the median time, T50, for eruptions within given magnitude intervals, where 50% of eruptions are older than T50: T50 ranges from 5,070 years for M4-4.9 eruptions to 935,000 years for M ≥ 8 eruptions. T50 follows a power law fit, suggesting a quantifiable relationship between eruption size and preservation potential of eruptive products. Several geographic regions have T50 ages of < 250 years for the smallest (~M4) eruptions reflecting substantial levels of under-recording. There is evidence for latitudinal variation in eruptive activity, possibly due to the effects of glaciation. A peak in recorded activity is identified at 11 to 9 ka in high-latitude glaciated regions. This is absent in non-glaciated regions, supporting the hypothesis of increased volcanism due to ice unloading around this time. Record completeness and consequent interpretation of record limitations are important in understanding volcanism on global to local scales and must be considered during rigorous volcanic hazard and risk assessments. The study also indicates that there need to be improvements in the quality of data, including assessment of uncertainties in volume estimates. © 2015 Brown et al.
dc.description.sponsorshipThe authors would like to acknowledge the funding bodies for this project: the European Research Council (VOLDIES grant), the Natural Environment Research Council (Global Volcano Model grant), the British Geological Survey and also Munich Re in the initial stages. Thanks to Susanna Jenkins and Henry Odbert for helpful discussions at the drafting stage.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringerOpen
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceJournal of Applied Volcanology
dc.sourceJ. Appl. Volcanol.
dc.sourceScopus
dc.titleCharacterisation of the Quaternary eruption record: Analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database
datacite.contributorSchool of Earth Sciences, University of Bristol, Queen's Road, Bristol, BS8 1RJ, United Kingdom
datacite.contributorSmithsonian Institution, National Museum of Natural History, Washington, 20560, DC, United States
datacite.contributorGNS Science, PO Box 30368, Avalon, Lower Hutt, 5040, New Zealand
datacite.contributorInstituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Distrito Federal, C.P. 04510, Mexico
datacite.contributorFaculty of Engineering, Universidad Mariana, San Juan de Pasto, Nariño, Colombia
datacite.contributorLancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
datacite.contributorDepartment of Geology, University of South Florida, 4202 East Fowler Avenue, Tampa, 33620, FL, United States
datacite.contributorUniversity of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
datacite.contributorBritish Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, United Kingdom
datacite.contributorGeological Survey of Japan, AIST, Site 7, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8567, Japan
datacite.contributorBrown S.K., School of Earth Sciences, University of Bristol, Queen's Road, Bristol, BS8 1RJ, United Kingdom
datacite.contributorCrosweller H.S., School of Earth Sciences, University of Bristol, Queen's Road, Bristol, BS8 1RJ, United Kingdom
datacite.contributorSparks R.S.J., School of Earth Sciences, University of Bristol, Queen's Road, Bristol, BS8 1RJ, United Kingdom
datacite.contributorCottrell E., Smithsonian Institution, National Museum of Natural History, Washington, 20560, DC, United States
datacite.contributorDeligne N.I., School of Earth Sciences, University of Bristol, Queen's Road, Bristol, BS8 1RJ, United Kingdom, GNS Science, PO Box 30368, Avalon, Lower Hutt, 5040, New Zealand
datacite.contributorGuerrero N.O., School of Earth Sciences, University of Bristol, Queen's Road, Bristol, BS8 1RJ, United Kingdom, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Distrito Federal, C.P. 04510, Mexico, Faculty of Engineering, Universidad Mariana, San Juan de Pasto, Nariño, Colombia
datacite.contributorHobbs L., School of Earth Sciences, University of Bristol, Queen's Road, Bristol, BS8 1RJ, United Kingdom, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
datacite.contributorKiyosugi K., Department of Geology, University of South Florida, 4202 East Fowler Avenue, Tampa, 33620, FL, United States, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
datacite.contributorLoughlin S.C., British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, United Kingdom
datacite.contributorSiebert L., Smithsonian Institution, National Museum of Natural History, Washington, 20560, DC, United States
datacite.contributorTakarada S., Geological Survey of Japan, AIST, Site 7, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8567, Japan
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonS.K. Brown
dc.contributor.contactpersonSchool of Earth Sciences, University of Bristol, Bristol, Queen's Road, BS8 1RJ, United Kingdom
dc.contributor.contactpersonemail: sarah.k.brown@bristol.ac.uk
dc.contributor.sponsorVOLDIES
dc.contributor.sponsorSeventh Framework Programme, FP7, (228064)
dc.contributor.sponsorSeventh Framework Programme, FP7
dc.contributor.sponsorNatural Environment Research Council, NERC
dc.contributor.sponsorEuropean Research Council, ERC
dc.contributor.sponsorBritish Geological Survey, BGS
dc.identifier.doi10.1186/2191-5040-3-5
dc.identifier.instnameUniversidad Mariana
dc.identifier.local5
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84962124332&doi=10.1186%2f2191-5040-3-5&partnerID=40&md5=2bbde13b5043ce691d5907cb4c5b4c35
dc.relation.citationvolume3
dc.relation.iscitedby98
dc.relation.referencesGeological Survey of Japan, (2008)
dc.relation.referencesAubry M.-P., Van Couvering J.A., Christie-Blick N., Landing E., Pratt B.R., Owen D.E., Ferrusquia-Villafranca I., Terminology of geological time: Establishment of a community standard, Stratigraphy, 6, 2, pp. 100-105, (2009)
dc.relation.referencesAuker M.R., Sparks R.S.J., Siebert L., Crosweller H.S., Ewert J., A statistical analysis of the global historical volcanic fatalities record, J Appl Volcanol, 2, 2, pp. 1-24, (2013)
dc.relation.referencesBaines P.G., Sparks R.S.J., Dynamics of giant volcanic ash clouds from supervolcanic eruptions, Geophys Res Lett, 32, 24, (2005)
dc.relation.referencesBryan S.E., Ukstins Peate I., Peate D.W., Self S., Jerram D.A., Mawby M.R., Marsh J.S., Miller J.A., The largest volcanic eruptions on Earth, Earth Sci Rev, 102, pp. 207-229, (2010)
dc.relation.referencesBryson R.U., Bryson R.A., Ruter A., A calibrated radiocarbon database of late Quaternary volcanic eruptions, Earth Discussions, 1, 2, pp. 123-134, (2006)
dc.relation.referencesBurden R.E., Philips J.C., Hincks T.K., Estimating volcanic plume heights from depositional clast size, J Geophys Res, 116, (2011)
dc.relation.referencesBurden R.E., Chen L., Phillips J.C., A statistical method for determining the volume of volcanic fall deposits, Bull Volcanol, 75, (2013)
dc.relation.referencesCarey S., Sigurdsson H., The intensity of plinian eruptions, Bull Volcanol, 51, 1, pp. 28-40, (1989)
dc.relation.referencesCarey S., Sparks R.S.J., Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns, Bull Volcanol, 48, 2, pp. 109-125, (1986)
dc.relation.referencesChesner C.A., Rose W.I., Deino A., Drake R., Westgate J.A., Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified, Geology, 19, pp. 200-203, (1991)
dc.relation.referencesClark P.U., Dyke A.S., Shakun J.D., Carlson A.E., Clark J., Wohlfarth B., Mitrovica J.X., Hostetler S.W., McCabe A.M., The Last Glacial Maximum, Science, 325, 5941, pp. 710-714, (2009)
dc.relation.referencesColes S., Sparks R.S.J., Extreme value methods for modelling historical series of large volcanic magnitudes, Statistics in Volcanology, 1, pp. 47-56, (2006)
dc.relation.referencesConnor L., Connor C., Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout, Statistics in volcanology of special publications of IAVCEI, 1, pp. 231-242, (2006)
dc.relation.referencesCrosweller H.S., Arora B., Brown S.K., Cottrell E., Deligne N.I., Guerrero N.O., Hobbs L., Kiyosugi K., Loughlin S.C., Lowndes J., Nayembil M., Siebert L., Sparks R.S.J., Takarada S., Venzke E., Global database on large magnitude explosive volcanic eruptions (LaMEVE), J Appl Volcanol, 1, 4, pp. 1-13, (2012)
dc.relation.referencesDecker R.W., How often does a Minoan eruption occur?, (1990)
dc.relation.referencesDeligne N.I., Coles S.G., Sparks R.S.J., Recurrence rates of large explosive volcanic eruptions, J Geophys Res, 115, (2010)
dc.relation.referencesEllis B.S., Mark D.F., Pritchard C.J., Wolff J.A., Temporal dissection of the Huckleberry Ridge Tuffusing the 40Ar/39Ar dating technique, Quat Geochronol, 9, pp. 34-41, (2012)
dc.relation.referencesEngwell S.L., Sparks R.S.J., Aspinall W.P., Quantifying uncertainties in the measurement of tephra fall thickness, (2013)
dc.relation.referencesFairbanks R.G., Mortlock R.A., Chiu T.-C., Cao L., Kaplan A., Guilderson T.P., Fairbanks T.W., Bloom A.L., Grootes P.M., Nadeau M.-J., Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals, Quat Sci Rev, 24, 16-17, pp. 1781-1796, (2005)
dc.relation.referencesFurlan C., Extreme value methods for modelling historical series of large volcanic magnitudes, Stat Model, 10, 2, pp. 113-132, (2010)
dc.relation.referencesGeyer A., Marti J., The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes, J Volcanol Geotherm Res, 175, 3, pp. 334-354, (2008)
dc.relation.referencesGibbard P.L., Head M.J., Walker M.J.C., Subcommission T., The Subcommission on Quaternary Stratigraphy (2010) Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma, J Quat Sci, 25, pp. 96-102, (2010)
dc.relation.referencesGutenberg B., Richter C.F., Earthquake magnitude, intensity, energy, and acceleration: (Second paper), Bull Seismol Soc Am, 46, 2, pp. 105-145, (1956)
dc.relation.referencesHayakawa Y., Tephra of the World database, (1996)
dc.relation.referencesHayakawa Y., Hayakawa's 2000-year and one million-year database, (2010)
dc.relation.referencesHuybers P., Langmuir C., Feedback between deglaciation, volcanism, and atmospheric CO2, Earth Planet Sci Lett, 286, 3-4, pp. 479-491, (2009)
dc.relation.referencesKutterolf S., Jegen M., Mitrovica J.X., Kwasnitschka T., Freundt A., Huybers P.J., A detection of Milankovitch frequencies in global volcanic activity, Geology, 41, pp. 227-230, (2013)
dc.relation.referencesMachida H., Quaternary Volcanoes and Widespread Tephras of the World, Glob Environ Res, 6, pp. 3-17, (2002)
dc.relation.referencesMason B.G., Pyle D.M., Oppenheimer C., The size and frequency of the largest explosive eruptions on Earth, Bull Volcanol, 66, 8, pp. 735-748, (2004)
dc.relation.referencesMastin L.G., Guffanti M., Servranckx R., Webley P., Barsotti S., Dean K., Durant A., Ewert J.W., Neri A., Rose W.I., Schneider D., Siebert L., Stunder B., Swanson G., Tupper A., Volentik A., Waythomas C.F., A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, J Volcanol Geotherm Res, 186, 1-2, pp. 10-21, (2009)
dc.relation.referencesNemeth K., Cronin S.J., White J.D.L., Kuwae Caldera and Climate Confusion, Open Geology J, 1, pp. 7-11, (2007)
dc.relation.referencesNewhall C.G., Self S., The Volcanic Explosivity Index (VEI)-An estimate of explosive magnitude for historical volcanism, J Geophys Res Oceans Atmos, 87, C2, pp. 1231-1238, (1982)
dc.relation.referencesNinkovich D., Sparks R.S.J., Ledbetter M.T., The exceptional magnitude and intensity of the Toba eruption, Sumatra: An example of the use of deep-sea tephra layers as a geological tool, Bull Volcanol, 41, 3, pp. 286-298, (1978)
dc.relation.referencesOppenheimer C., Limited global change due to the largest known Quaternary eruption, Toba 74 kyr BP, Quat Sci Rev, 21, pp. 1593-1609, (2002)
dc.relation.referencesPeltier W.R., Ice Age Paleotopography, Science, 265, 5169, pp. 195-201, (1994)
dc.relation.referencesPetraglia M.D., Korisettar R., Pal J.N., The Toba volcanic super-eruption of 74,000 years ago: Climate change, environments, and evolving humans, Quat Int, 258, pp. 1-4, (2012)
dc.relation.referencesPyle D.M., The thickness, volume and grainsize of tephra fall deposits, Bull Volcanol, 51, pp. 1-15, (1989)
dc.relation.referencesPyle D.M., Sizes of volcanic eruptions, Encyclopedia of Volcanoes, (2000)
dc.relation.referencesPyle D.M., Beattie P.D., Bluth G.J.S., Sulphur emissions to the stratosphere from explosive volcanic eruptions, Bull Volcanol, 57, pp. 663-671, (1996)
dc.relation.referencesRobock A., Volcanic eruptions and climate, Rev Geophys, 38, pp. 191-219, (2000)
dc.relation.referencesRose W.I., Conway F.M., Pullinger C.R., Deino A., McIntosh W.C., An improved age framework for late Quaternary silicic eruptions in northern Central America, Bull Volcanol, 61, pp. 106-120, (1999)
dc.relation.referencesSiebert L., Simkin T., Kimberly P., Volcanoes of the World, (2010)
dc.relation.referencesSikes E.L., Medeiros P.M., Augustinus P., Wilmshurst J.M., Freeman K.R., Seasonal variations in aridity and temperature characterize changing climate during the last deglaciation in New Zealand, Quat Sci Rev, (2013)
dc.relation.referencesSimkin T., Terrestrial volcanism in space and time, Annu Rev Earth Planet Sci, 21, pp. 427-452, (1993)
dc.relation.referencesSimkin T., Siebert L., Earth's volcanoes and eruptions: an overview, Encyclopedia of Volcanoes, (2000)
dc.relation.referencesSmall C., Naumann T., The global distribution of human population and recent volcanism, Environmental Hazards, 3, pp. 93-109, (2001)
dc.relation.referencesSparks R.S.J., Bursik M.I., Carey S.N., Gilbert J.S., Glaze L., Sigurdsson H., Woods A.W., Volcanic Plumes, (1997)
dc.relation.referencesStorey M., Roberts R.G., Saidin M., Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary record, Proc Natl Acad Sci U S A, 109, pp. 18684-18688, (2012)
dc.relation.referencesStuiver M., Reimer P.J., Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35, 1, pp. 215-230, (1993)
dc.relation.referencesVolcanoes of the World 4.0, (2013)
dc.relation.referencesWatt S.F.L., Pyle D.M., Mather T.A., The volcanic response to deglaciation: Evidence from glaciated arcs and a reassessment of global eruption records, Earth Sci Rev, 122, pp. 77-102, (2013)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsDatabase
dc.subject.keywordsExplosive eruptions
dc.subject.keywordsJapan
dc.subject.keywordsMagnitude
dc.subject.keywordsQuaternary
dc.subject.keywordsRecord completeness
dc.subject.keywordsUnder-recording
dc.subject.keywordsVolcanic hazards
dc.subject.keywordsJapan
dc.subject.keywordsdatabase
dc.subject.keywordsexplosion
dc.subject.keywordsexplosive volcanism
dc.subject.keywordsgeographical region
dc.subject.keywordsNorthern Hemisphere
dc.subject.keywordspower law
dc.subject.keywordsQuaternary
dc.subject.keywordsspatial distribution
dc.subject.keywordsspatiotemporal analysis
dc.subject.keywordsvolcanic eruption
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue1


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record