Mostrar el registro sencillo del ítem
Potential application of developed methanogenic microbial consortia for coal biogasification
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Fuertez J. | |
dc.contributor.author | Córdoba G. | |
dc.contributor.author | McLennan J.D. | |
dc.contributor.author | Adams D.J. | |
dc.contributor.author | Sparks T.D. | |
dc.date.accessioned | 2024-12-02T20:15:33Z | |
dc.date.available | 2024-12-02T20:15:33Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1665162 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28913 | |
dc.description.abstract | Microbially enhanced coalbed methane has become an important research topic in the later years. The biological conversion of coal to methane can be conceived as a feasible and environmental friendly approach for improving coalbed methane production. Within the strategies for stimulation of gas production, the addition of a microbial consortium or bioaugmentation can be seen as a promising alternative. However, relatively few studies have been conducted on the strategies for enriching microbial population ex-situ under initial atmospheric exposure for subsequent injection into coal seams to stimulate biodegradation and methanogenesis. The development of methanogenic microbial consortia, especially those that can tolerate moderate and low oxygen concentrations and still retain anaerobic functionality, can be considered as an attractive biological complement for coal biogasification. The performance of promising microbial consortia was evaluated at low concentrations of nutrient amendments (e.g., 22.4% v/v, 3.36 mg/cm3 TSB) and [NaCl] 6.6 mg/cm3 as a possible scenario and to foresee the elevated costs of nutrient utilization at large-scale operations (i.e., in-situ and/or ex-situ applications). Incubation periods of up to four months were tested at 23 °C. Headspace concentrations of CH4 and CO2 were analyzed by gas chromatography. After 61 days of incubation for the most promising microbial samples, generated headspace gas concentrations reached 95,700 ppm (14 sft3/ton) for methane and 37,560 ppm (5.5 sft3/ton) for carbon dioxide. Microbial diversity in promising consortia was investigated. Both bacteria and archaea were identified. © 2018 Elsevier B.V. | |
dc.description.sponsorship | The authors gratefully acknowledge the support and resources provided for this work under the United States' Department of Energy Award DE-FE0024088 . The authors additionally acknowledge support from the Administrative Department of Science and Technology of Colombia (COLCIENCIAS) as well the University of Utah 's Undergraduate Research Opportunities Program (UROP), and the graduate research assistant Richard Boakye. Finally, we want to thank Prof. Ramesh Goel from the University of Utah for providing DNA extraction and subsequent identification of microbial communities. | |
dc.format | 15 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | International Journal of Coal Geology | |
dc.source | Int. J. Coal Geol. | |
dc.source | Scopus | |
dc.title | Potential application of developed methanogenic microbial consortia for coal biogasification | |
datacite.contributor | Department of Chemical Engineering, University of Utah, 50 S. Central Campus Dr., Salt Lake City, 84112, UT, United States | |
datacite.contributor | Department of Humanities, Mariana University, St. 18 No 34-104, Pasto-Nariño, Colombia | |
datacite.contributor | Energy & Geoscience Institute, 423 Wakara Way Suite 300, Salt Lake City, 84108, UT, United States | |
datacite.contributor | Inotec Inc., 2712 S. 3600 W, Suite A, Salt Lake City, 84119, UT, United States | |
datacite.contributor | Department of Material Science Engineering, University of Utah, 122 Central Campus Dr., Salt Lake City, 84112, UT, United States | |
datacite.contributor | Fuertez J., Department of Chemical Engineering, University of Utah, 50 S. Central Campus Dr., Salt Lake City, 84112, UT, United States | |
datacite.contributor | Córdoba G., Department of Humanities, Mariana University, St. 18 No 34-104, Pasto-Nariño, Colombia | |
datacite.contributor | McLennan J.D., Department of Chemical Engineering, University of Utah, 50 S. Central Campus Dr., Salt Lake City, 84112, UT, United States, Energy & Geoscience Institute, 423 Wakara Way Suite 300, Salt Lake City, 84108, UT, United States | |
datacite.contributor | Adams D.J., Inotec Inc., 2712 S. 3600 W, Suite A, Salt Lake City, 84119, UT, United States | |
datacite.contributor | Sparks T.D., Department of Material Science Engineering, University of Utah, 122 Central Campus Dr., Salt Lake City, 84112, UT, United States | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | J. Fuertez | |
dc.contributor.contactperson | Department of Chemical Engineering, University of Utah, Salt Lake City, 50 S. Central Campus Dr., 84112, United States | |
dc.contributor.contactperson | email: john.fuertez@utah.edu | |
dc.contributor.sponsor | Administrative Department of Science and Technology of Colombia | |
dc.contributor.sponsor | Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) | |
dc.contributor.sponsor | University of Utah | |
dc.identifier.doi | 10.1016/j.coal.2018.02.013 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | IJCGD | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042265657&doi=10.1016%2fj.coal.2018.02.013&partnerID=40&md5=27874a9725be5e8dfb05d57b1d1dc0f0 | |
dc.relation.citationendpage | 180 | |
dc.relation.citationstartpage | 165 | |
dc.relation.citationvolume | 188 | |
dc.relation.iscitedby | 25 | |
dc.relation.references | Adams D.J., Opara A.O., Optimization of biogenic methane production from hydrocarbon sources, (2015) | |
dc.relation.references | Baena S., Fardeau M.L., Labat M., Ollivier B., Thomas P., Garcia J.L., Patel B.K., Aminobacterium colombiensegen. nov. sp. Nov., an amino acid-degrading anaerobe isolated from anaerobic sludge, Anaerobe, 4, 5, pp. 241-250, (1998) | |
dc.relation.references | Baena S., Garcia J.L., Cayol J.L., Ollivier B., Aminobacterium, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-5, (2015) | |
dc.relation.references | Bao Y., Huang H., He D., Ju Y., Qi Y., Microbial enhancing coal-bed methane generation potential, constraints and mechanism – a mini-review, J. Nat. Gas Sci. Eng., 35, pp. 68-78, (2016) | |
dc.relation.references | Barnhart E.P., De Leon K.B., Ramsay B.D., Cunningham A.B., Fields M.W., Investigation of coal-associated bacterial and archaeal populations from a diffusive microbial sampler (DMS), Int. J. Coal Geol., 115, pp. 64-70, (2013) | |
dc.relation.references | Barra A., Fajardo C., Grenni P., Ludovica M., Amalfitano S., Ciccoli R., Martin M., Gibello A., The role of a groundwater bacterial community in the degradation of the herbicide terbuthylazine, FEMS Microbiol. Ecol., 71, pp. 127-136, (2009) | |
dc.relation.references | Beckmann S., Lueders T., Kruger M., Netzer F.V., Engelen B., Cypionka H., Acetogens and Acetoclastic Methanosarcinales govern methane formation in abandoned coal mines, Appl. Environ. Microbiol., 77, pp. 3749-3756, (2011) | |
dc.relation.references | Benson H.J., Microbiological Applications: Laboratory Manual in General Microbiology, (2002) | |
dc.relation.references | Bhattad U.H., Preservation of Methanogenic Cultures to Enhance Anaerobic Digestion, (2012) | |
dc.relation.references | Boone D.R., Methanobacterium, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-8, (2015) | |
dc.relation.references | Botheju D., Bakke R., Oxygen effects in anaerobic digestion: a review, Open Waste Manag. J., 4, pp. 1-19, (2011) | |
dc.relation.references | Bou G., Fernandez-Olmos A., Garcia C., Saez-Nieto J.A., Valdezate S., Bacterial identification methods in the microbiology laboratory, Enferm. Enfecc. Microbiol. Clin., 29, 8, pp. 601-608, (2011) | |
dc.relation.references | Busse H.J., Auling G., Achromobacter, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-14, (2015) | |
dc.relation.references | Buswell E.G., Neave S.L., Laboratory studies of sludge digestion, Illinois Division of State Water Survey, Bulletin No. 30, (1930) | |
dc.relation.references | Castro H., Queirolo M., Quevedo M., Muxi L., Preservation methods for the storage of anaerobic sludges, Biotechnol. Lett., 24, 4, pp. 329-333, (2002) | |
dc.relation.references | Colosimo F., Thomas R., Lloyd J.R., Taylor K.G., Boothman C., Smith A.D., Lord R., Kalin R.M., Biogenic methane in shale gas and coalbed methane: a review of current knowledge and gaps, Int. J. Coal Geol., 165, pp. 106-120, (2016) | |
dc.relation.references | Davis K.J., Gerlach R., Transition of biogenic coal-to-methane conversion from the laboratory to the field: a review of important parameters and studies, Int. J. Coal Geol., 185, pp. 33-43, (2018) | |
dc.relation.references | Del Real J.O., Evaluation and Modeling of Anaerobic Depuration Kinetics from Stillage of Alcohol Industry, (2007) | |
dc.relation.references | Dolfing J., Thermodynamic constraints on syntrophic acetate oxidation, Appl. Environ. Microbiol., 80, pp. 1539-1541, (2014) | |
dc.relation.references | Drake H.L., Gossner A.S., Sporomusa, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-7, (2015) | |
dc.relation.references | Faiz M., Hendry P., Significance of microbial activity in Australian coalbed methane reservoirs – a review, Bull. Can. Petrol. Geol., 54, 3, pp. 261-272, (2006) | |
dc.relation.references | Fallgren P.H., Zeng C., Ren Z., Lu A., Ren S., Jin S., Feasibility of microbial production of new natural gas from non-gas-producing lignite, Int. J. Coal Geol., 115, pp. 79-84, (2013) | |
dc.relation.references | Ferry J.G., Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, (1993) | |
dc.relation.references | Flores R.M., Rice C.A., Stricker G.D., Warden A., Ellis M.S., Methanogenic pathways of coal-bed gas in the Powder River basin, United States: the geologic factor, Int. J. Coal Geol., 76, pp. 52-75, (2008) | |
dc.relation.references | Frederiksen W., Citrobacter, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-23, (2015) | |
dc.relation.references | Fuchs A., Lyautey E., Montuelle B., Casper P., Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes, J. Geophys. Res. Biogeosci., 121, pp. 1394-1406, (2016) | |
dc.relation.references | Fuertez J., Boakye R., McLennan J.D., Adams D.J., Sparks T.D., Gottschalk A., Developing methanogenic microbial consortia from diverse coal sources and environments, J. Nat. Gas Sci. Eng., 46, pp. 637-650, (2017) | |
dc.relation.references | Fuertez J., Nguyen V., McLennan J.D., Adams D.J., Han K.B., Sparks T.D., Optimization of biogenic methane production from coal, Int. J. Coal Geol., 183, pp. 14-24, (2017) | |
dc.relation.references | Furmann A., Microbial Methanogenesis from Coal Extracts in Experimental Bioreactors, (2011) | |
dc.relation.references | Furmann A., Schimmelmann A., Brassell S.C., Mastalerz M., Picardal F., Chemical compounds classes supporting microbial methanogenesis in coal, Chem. Geol., 339, pp. 226-241, (2013) | |
dc.relation.references | Gallagher L.K., Evaluation of Factors that Influence Microbial Communities and Methane Production in Coal Microcosms, (2014) | |
dc.relation.references | Gallagher L.K., Glossner A.W., Landkamer L.L., Figueroa L.A., Mandernack K.W., Munakata-Marr J., The effect of coal oxidation on methane production and microbial community structure in Powder River Basin coal, Int. J. Coal Geol., 115, pp. 71-78, (2013) | |
dc.relation.references | Gao L., Brassell S.C., Mastalerz M., Schimmelmann A., Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana), USA, Int. J. Coal Geol., 107, pp. 152-164, (2013) | |
dc.relation.references | Green M.S., Flanegan K.C., Gilcrease P.C., Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, USA, Int. J. Coal Geol., 76, pp. 34-45, (2008) | |
dc.relation.references | Grostern A., Edwards E., A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes, Appl. Environ. Microbiol., 72, 12, pp. 7849-7856, (2006) | |
dc.relation.references | Grundger F., Jimenez N., Thielemann T., Straaten N., Luders T., Richnow H.H., Kruger M., Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany, Front. Microbiol., 6, (2015) | |
dc.relation.references | Guo H., Liu R., Yu Z., Zhang H., Yun J., Li Y., Liu X., Pan J., Pyrosequencing revels the dominance of methylotrophic methanogenesis in coalbed methane reservoir associate with Eastern Ordos Basin in China, Int. J. Coal Geol., 93, pp. 56-61, (2012) | |
dc.relation.references | Guo H., Yu Z., Thompson I.P., Zhang H., A contribution of hydrogenotrophic methanogenesis to the biogenic coalbed methane reserves of Southern Qinshui Basin, China, Appl. Microbiol. Biotechnol., 98, pp. 9083-9093, (2014) | |
dc.relation.references | Guo H., Yu Z., Zhang H., Phylogenetic diversity of microbial communities associated with coalbed methane from Eastern Ordos Basin, China. Int. J. Coal Geol., 150, pp. 120-126, (2015) | |
dc.relation.references | Gupta P., Gupta A., Biogas production from coal via anaerobic fermentation, Fuel, 118, pp. 238-242, (2014) | |
dc.relation.references | Hahnke R.L., Meier-Kolthoff J.P., Garcia-Lopez M., Mukherjee S., Huntemann M., Ivanova N.N., Woyke T., Kyrpides N.C., Klenk H.P., Goker M., Genome-based taxonomic classification of Bacteroidetes, Front. Microbiol., 7, (2016) | |
dc.relation.references | Harris S.H., Smith R.L., Barker C.E., Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals, Int. J. Coal Geol., 76, pp. 46-51, (2008) | |
dc.relation.references | Hattori S., Syntrophic acetate-oxidizing microbes in methanogenic environments, Microbes Environ., 23, 2, pp. 118-127, (2008) | |
dc.relation.references | Head I.M., Gray N.D., Larter S.R., Life in the slow lane: biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management, Front. Microbiol., 5, pp. 1-23, (2014) | |
dc.relation.references | Heider J., Fuchs G., Thauera, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-11, (2015) | |
dc.relation.references | Hoehler T., Gunsalus R.P., Mcinerney J.M., Environmental constraints that limit methanogenesis, Handbook of Hydrocarbon and Lipid Microbiology, pp. 635-654, (2010) | |
dc.relation.references | Holliger C., Dehalobacter, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-4, (2015) | |
dc.relation.references | Ibanez J.G., Hernandez-Esparza M., Doria-Serrano C., Fregoso-Infante A., Mohan M., Environmental Chemistry: Fundamentals, (2007) | |
dc.relation.references | Ito T., Yoshiguchi K., Ariesyady H.D., Okabe S., Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge, ISME J., 5, 12, pp. 1844-1856, (2011) | |
dc.relation.references | Jarrell K.F., Extreme oxygen sensitivity in methanogenic Archaebacteria, Bioscience, 35, 5, pp. 298-302, (1985) | |
dc.relation.references | Jha P., Ghosh S., Mukhopadhyay K., Sachan A., Vidyarthi A.S., Syntrophics bridging the gap of methanogenesis in the Jharia coal bed Basin, J. Data Mining Genomic. Proteomic., 6, (2015) | |
dc.relation.references | Jones E., Voytek M., Corum M., Orem W., Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium, Appl. Environ. Microbiol., 76, pp. 7013-7022, (2010) | |
dc.relation.references | Justicia-Leon S.D., Ritalahti K.M., Mack E.E., Loffler F.E., Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from Pristine River sediment, Appl. Environ. Microbiol., 78, 4, pp. 1288-1291, (2012) | |
dc.relation.references | Karakashev D., Batsone D.J., Trably E., Angelidaki I., Acetate oxidation is the dominant pathway from acetate in the absence of Methanosaetaceae, Appl. Environ. Microbiol., 72, 7, pp. 5138-5141, (2006) | |
dc.relation.references | Kato M.T., Field J.A., Lettinga G., Anaerobe tolerance to oxygen and the potentials of anaerobic and aerobic cocultures for wastewater treatment, Braz. J. Chem. Eng., 14, 4, pp. 1678-4383, (1997) | |
dc.relation.references | Kayhanian M., Tchobanoglous G., Brown R., Biomass conversion processes for energy recovery, Handbook of Energy Conservation and Renewable Energy, (2007) | |
dc.relation.references | Kerckhof F.M., Courtens E.N., Geirnaert A., Hoefman S., Ho A., Vilchez R., Pieper D.H., Jauregui R., Vlaeminck S.E., Van de Wiele T., Vandamme P., Heylen K., Boon N., Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity, PLoS One, 9, 6, (2014) | |
dc.relation.references | Kiener A., Leisinger T., Oxygen sensitivity of methanogenic bacteria, Syst. Appl. Microbiol., 4, 3, pp. 305-312, (1983) | |
dc.relation.references | Kirby T., Lancaster J., Fridovich I., Isolation and characterization of the ion-containing superoxide dismutase of Methanobacterium bryantii, Arch. Biochem. Biophys., 210, pp. 140-148, (1981) | |
dc.relation.references | Kotsyurbenko O.R., Friedrich M.W., Simankova M.V., Nozhevnikova A.N., Golyshin P.N., Timmis K.N., Conrad R., Shift from acetoclastic to H2-dependent methanogenesis in a West Siberian Peat Bog at low pH values and isolation of an acidophilic Methanobacterium strain, Appl. Environ. Microbiol., 73, pp. 2344-2348, (2007) | |
dc.relation.references | Kryachko Y., Dong X., Sense C.W., Voordouw G., Compositions of microbial communities associated with oil and water in a mesothermic oil field, Anton Leeuw. Int. J. G., 101, 3, pp. 493-506, (2012) | |
dc.relation.references | Kuever J., Rainey F.A., Widdel F., Desulfovibrio, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-17, (2015) | |
dc.relation.references | Kunapuli U., Jahn M.K., Lueders T., Geyer R., Heipieper H.J., Meckenstock R.U., Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons, Int. J. Syst. Evol. Microbiol., 60, pp. 686-695, (2010) | |
dc.relation.references | Lavania M., Cheema S., Manab P., Ganapathi R., Methanogenic potential of a thermophilic consortium enriched from coal mine, Int. Biodeterior. Biodegrad., 93, pp. 177-185, (2014) | |
dc.relation.references | Lee E.Y., Jun Y.S., Cho K.S., Ryu H.W., Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c, J. Air Waste Manage. Assoc., 52, 4, pp. 400-406, (2002) | |
dc.relation.references | Li L., Treatment of Produced Water Using Chemical and Biological Unit Operations, (2010) | |
dc.relation.references | Li D., Midgley D.J., Ross J.P., Oytam Y., Abell G.C.J., Volk H., Daud W.A.W., Henry P., Microbial biodiversity in a Malaysian oil field and a systematic comparison with oil reservoirs worldwide, Arch. Microbiol., 194, 6, pp. 513-523, (2012) | |
dc.relation.references | Li X.K., Ma K.L., Meng L.W., Zhang J., Wang K., Performance and microbial community profiles in an anaerobic reactor treating with simulated PTA wastewater: from mesophilic to thermophilic temperature, Water Res., 61, pp. 57-66, (2014) | |
dc.relation.references | Lipski A., Kampfer P., Aquamicrobium ahrensii sp. nov. and Aquamicrobium segne sp. nov., isolated from experimental biofilters, Int. J. Syst. Evol. Microbiol., 62, 10, pp. 2511-2516, (2011) | |
dc.relation.references | Liu Y., Boone D.R., Effects of salinity on methanogenic decomposition, Bioresour. Technol., 35, 3, pp. 271-273, (1991) | |
dc.relation.references | Luo M.F., Wu H., Wang L., Xing X.H., Study on the structure and function of a stable methane-oxidizing mixed microbial consortium, Wei Sheng Wu Xue Bao, 47, 1, pp. 103-109, (2007) | |
dc.relation.references | Lupa B., Wiegel J., Desulfitobacterium, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-13, (2015) | |
dc.relation.references | Massett J., Calusinka M., Hamilton C., Hiligsmann S., Joris B., Wilmotte A., Thonart P., Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp, Biotechnol. Biofuels, 5, (2012) | |
dc.relation.references | Mayumi D., Mochimaru H., Yoshioka H., Sakata S., Maeda H., Miyagawa Y., Ikarashi M., Kamagata Y., Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in high-temperature petroleum reservoir of Yabase oil field (Japan), Envirom. Microbiol., 13, 8, pp. 1995-2006, (2011) | |
dc.relation.references | Megonigal J.P., Hines M.E., Visscher P.T., Anaerobic metabolism: linkages to trace gases and aerobic processes, Treatise on Geochemistry, pp. 273-359, (2013) | |
dc.relation.references | Mesle M., Dromart G., Oger P., Microbial methanogenesis in subsurface oil and coal, Res. Microbiol., 164, 9, pp. 959-972, (2013) | |
dc.relation.references | Mesle M., Dromart G., Haeseler F., Oger P., Classes of organic molecules targeted by a methogenic microbial consortium grown on sedimentary rocks of various maturities, Front. Microbiol., 6, (2015) | |
dc.relation.references | Nolla-Ardevol V., Peces M., Strous M., Tegetmeyer H., Metagenome from spirulina digesting biogas reactor: analysis via binning of contigs and classification of short reads, BCM Microbiol., 15, (2015) | |
dc.relation.references | Nusslein B., Chin K.J., Eckert W., Conrad R., Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel), Environ. Microbiol., 3, 7, pp. 460-470, (2001) | |
dc.relation.references | Obi L.U., Atagana H.I., Adeleke R.A., Isolation and characterization of crude oil sludge degrading bacteria, Spring, 5, 1, (2016) | |
dc.relation.references | Opara A., Biochemically Enhanced Methane Production from Coal, (2012) | |
dc.relation.references | Opara A., Adams D.J., Free M.L., Mclennan J., Hamilton J., Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials, Int. J. Coal Geol., 96-97, pp. 1-8, (2012) | |
dc.relation.references | Orem W.H., Voytek M.A., Jones E.J., Lerch H.E., Bates A.L., Corum M.D., Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions, Org. Geochem., 41, 9, pp. 997-1000, (2010) | |
dc.relation.references | Orem W., Tatu C., Varonka M., Lerch H., Bates A., Engle M., Crosby L., McIntosh J., Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale, Int. J. Coal Geol., 126, pp. 20-31, (2014) | |
dc.relation.references | Palleroni N.J., Pseudomonas, Bergey's Manual of Systematics of Archaea and Bacteria, (2015) | |
dc.relation.references | Palleroni N.J., Stenotrophomonas, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-20, (2015) | |
dc.relation.references | Pan X., Angelidaki I., Alvarado-Morales M., Liu H., Liu Y., Huang X., Zhu G., Methane production from formate, acetate and H<sub>2</sub>/CO<sub>2</sub> | |
dc.relation.references | focusing on kinetics and microbial characterization, Bioresour. Technol., 218, pp. 796-806, (2016) | |
dc.relation.references | Papendick S.L., Downs K.R., Vo K.D., Hamilton S.K., Dawson G.K., Golding S.D., Biogenic methane potential for Surat Basin, Queensland coal seams, Int. J. Coal Geol., 88, pp. 123-134, (2011) | |
dc.relation.references | Park Y.S., Liang Y., Biogenic methane production from coal: a review on recent research and development on microbially enhanced coalbed methane (MECBM), Fuel, 166, pp. 258-267, (2016) | |
dc.relation.references | Penner T.J., Foght J.M., Budwill K., Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures, Int. J. Coal Geol., 82, pp. 81-93, (2010) | |
dc.relation.references | Priest F.G., Paenibacillus, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-40, (2015) | |
dc.relation.references | Rainey F.A., Lachnospiraceae fam. nov, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-2, (2015) | |
dc.relation.references | Rainey F.A., Acetonema, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-5, (2015) | |
dc.relation.references | Rainey F.A., Hollen B.J., Small A.M., Clostridium, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-122, (2015) | |
dc.relation.references | Rathi R., Priya A., Vohra M., Lavania M., Lal B., Sarma P., Development of a microbial process for methane generation from bituminous coal at thermophilic conditions, Int. J. Coal Geol., 147-148, pp. 25-34, (2015) | |
dc.relation.references | Ritter D., Vinson D., Barnhart E., Akob D., Fields M., Cunningham A., Orem W., McIntosh J., Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges, Int. J. Coal Geol., 146, pp. 28-41, (2015) | |
dc.relation.references | Riviere D., Desvignes V., Pelletier E., Chaussonnerie S., Guermazi S., Weissenbach J., Li T., Camacho P., Sghir A., Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge, ISME J., 3, pp. 700-714, (2009) | |
dc.relation.references | Robbins S.J., Evans P.N., Esterle J.S., Golding S.D., Tyson G.W., The effect of coal rank on biogenic methane potential and microbial composition, Int. J. Coal Geol., 154, pp. 205-212, (2016) | |
dc.relation.references | Schnurer A., Jarvis A., Microbiological handbook for biogas plants, Swedish Waste Management U2009:03. Swedish Gas Centre Report 207, (2010) | |
dc.relation.references | Sekiguchi Y., Syntrophomonas, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-11, (2015) | |
dc.relation.references | Senthamaraikkannan G., Development of Multiscale Microbial Kinetic-Transport Models for Prediction and Optimization of Biogenic Coalbed Methane Production, (2015) | |
dc.relation.references | Senthamaraikkannan G., Budwill K., Gates I., Mitra S.K., Prasa V., Kinetic modeling of the biogenic production of coalbed methane, Energy Fuel, 30, 2, pp. 871-883, (2016) | |
dc.relation.references | Shah H.N., Hookey J.V., Tissierella, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-3, (2015) | |
dc.relation.references | Shi Z., Luo G., Wang G., Cellulomonas carbonis sp. nov., isolated from coal mine soil, Int. J. Syst. Evol. Microbiol., 62, pp. 2004-2010, (2012) | |
dc.relation.references | Shimizu S., Ueno A., Ishijima Y., Microbial communities associated with acetate-rich gas petroleum reservoir surface facilities, Biosci. Biotechnol. Biochem., 75, 9, pp. 1835-1837, (2011) | |
dc.relation.references | Singh D.N., Tripathi A.K., Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed, Bioresour. Technol., 128, pp. 215-221, (2013) | |
dc.relation.references | Sizova M.V., Panikov N.S., Tourova T.P., Flanagan P.W., Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a sphagnum peat bog, FEMS Microbiol. Ecol., 45, 3, pp. 301-315, (2003) | |
dc.relation.references | Smith I.M., Microbial Methane from Carbon Dioxide in Coal Beds, 25, (2010) | |
dc.relation.references | Stackebrandt E., Schumann P., Cellulomonas, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-14, (2015) | |
dc.relation.references | Steubing P.M., Isolation of an unknown bacterium from soil, Tested Studies for Laboratory Teaching. Proceedings of the 14th Workshop/Conference of the Association for Biology Laboratory Education (ABLE). Las Vegas, U.S. June 2nd-6th, (1993) | |
dc.relation.references | Strapoc D., Mastalerz M., Dawson K., Macalady J., Callaghan A., Wawrik B., Turich C., Ashby M., Biogeochemistry of microbial coalbed methane, Annu. Rev. Earth Planet. Sci., 39, pp. 617-656, (2011) | |
dc.relation.references | Toledo G.V., Richardson T.H., Stingl U., Mathur E.J., Venter J.C., Methods to stimulate biogenic methane production from hydrocarbon-bearing formations, (2010) | |
dc.relation.references | Valentine D.L., Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review, Antonie Van Leeuwenhoek, 81, pp. 271-282, (2002) | |
dc.relation.references | Vick S.H.W., Greenfield P., Tran-Dinh N., Tebu S.G., Midley D.J., Paulsen I.T., The coal seam microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community, Int. J. Coal Geol., 186, pp. 41-50, (2018) | |
dc.relation.references | Villemur R., Lanthier M., Beaudet R., Lepine F., The Desulfitobacterium genus, FEMS Microbiol. Rev., 30, pp. 706-733, (2006) | |
dc.relation.references | Wawrik B., Mendivelso M., Parisi V.A., Suflita J.M., Davidova I.A., Marks C.R., Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin, FEMS Microbiol. Ecol., 81, pp. 26-42, (2012) | |
dc.relation.references | White C., Smith D.H., Jones K.L., Goodman A.L., Jikich S.A., LaCount R.B., Dubose S.B., Ozdemir E., Morsi B.I., Schroeder K.T., Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery –a review, Energy Fuel, 19, 3, pp. 659-724, (2005) | |
dc.relation.references | Willems A., Gillis M., Comamonas, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-17, (2015) | |
dc.relation.references | Williams R.T., Crawford R.L., Methanogenic bacteria, including an acid-tolerant strain from peatlands. App, Environ. Microbiol., 50, pp. 1542-1544, (1985) | |
dc.relation.references | Win T.T., Kim H., Cho K., Song K.G., Park J., Monitoring the microbial community shift throughout the shock changes of hydraulic retention time in an anaerobic moving bed membrane bioreactor, Bioresour. Technol., 202, pp. 125-132, (2016) | |
dc.relation.references | Wolfe R.S., Techniques for cultivating methanogens, Methods Enzymol., 494, pp. 1-22, (2011) | |
dc.relation.references | Wu Z.G., Wang F., Gu C.G., Zhang Y.P., Yang Z.Z., Wu X.W., Jiang X., Aquamicrobium terrae sp. nov., isolated from polluted soil near a chemical factory, Antonic Van Leeuwnhock, 105, 6, pp. 1131-1137, (2014) | |
dc.relation.references | Wu S., Bhattacharjee A.S., Weissbrodt D.G., Morgenroth E., Goel R., Effect of short term external perturbations on bacterial ecology and activities in a partial nitritation and anammox reactor, Bioresour. Technol., 219, pp. 527-535, (2016) | |
dc.relation.references | Young L., Frazer A., The fate of lignin and lignin-derived compounds in anaerobic environments, Geomicrobiol J., 5, pp. 261-293, (1987) | |
dc.relation.references | Yutin N., Galperin M., A genomic update on clostridial phylogeny: Gram-negative spore-formers and other misplaced Clostridia, Environ. Microbiol., 15, 10, pp. 2631-2641, (2013) | |
dc.relation.references | Zellner G., Boone D.R., Methanofollis, Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-7, (2015) | |
dc.relation.references | Zhang J., Liang Y., Evaluating approaches for sustaining methane production from coal through biogasification, Fuel, 202, pp. 233-240, (2017) | |
dc.relation.references | Zhang J., Liang Y., Pandey R., Harpalani S., Characterizing microbial communities dedicated for conversion of coal to methane in-situ and ex-situ, Int. J. Coal Geol., 146, pp. 145-154, (2015) | |
dc.relation.references | Zhang J., Park S., Liang Y., Harpalani S., Finding cost-effective nutrient solutions and evaluating environmental conditions for biogasifying bituminous coal to methane ex situ, Appl. Energy, 165, pp. 559-568, (2016) | |
dc.relation.references | Zheng H., Chen T., Rudolph V., Golding S.D., Biogenic methane production from Bowen Basin coal waste materials, Int. J. Coal Geol., 169, pp. 22-27, (2017) | |
dc.relation.references | Zupancic G.D., Grilc V., Anaerobic treatment and biogas production from organic waste, Management of Organic Waste, pp. 1-28, (2012) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Carbon dioxide | |
dc.subject.keywords | CBM | |
dc.subject.keywords | Methane | |
dc.subject.keywords | Methanogenesis | |
dc.subject.keywords | Microbial consortia | |
dc.subject.keywords | Biodegradation | |
dc.subject.keywords | Carbon dioxide | |
dc.subject.keywords | Coal | |
dc.subject.keywords | Coal bed methane | |
dc.subject.keywords | Coal deposits | |
dc.subject.keywords | Gas chromatography | |
dc.subject.keywords | Nutrients | |
dc.subject.keywords | Sodium chloride | |
dc.subject.keywords | Biogasification | |
dc.subject.keywords | Biological conversion | |
dc.subject.keywords | CBM | |
dc.subject.keywords | Coalbed methane production | |
dc.subject.keywords | Environmental friendly approach | |
dc.subject.keywords | Ex situ | |
dc.subject.keywords | Gas productions | |
dc.subject.keywords | Methanogenesis | |
dc.subject.keywords | Microbial consortium | |
dc.subject.keywords | Research topics | |
dc.subject.keywords | biodegradation | |
dc.subject.keywords | biogas | |
dc.subject.keywords | carbon dioxide | |
dc.subject.keywords | coal seam | |
dc.subject.keywords | coalbed methane | |
dc.subject.keywords | concentration (composition) | |
dc.subject.keywords | gas production | |
dc.subject.keywords | methanogenesis | |
dc.subject.keywords | Methane | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.spa | Artículo científico |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos Scopus [165]