Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorQuintero-Dallos V.
dc.contributor.authorGarcía-Martínez J.B.
dc.contributor.authorContreras-Ropero J.E.
dc.contributor.authorBarajas-Solano A.F.
dc.contributor.authorBarajas-Ferrerira C.
dc.contributor.authorLavecchia R.
dc.contributor.authorZuorro A.
dc.date.accessioned2024-12-02T20:15:33Z
dc.date.available2024-12-02T20:15:33Z
dc.date.issued2019
dc.identifier.issn20734441
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28910
dc.description.abstractThis study investigates distillery wastewater, commonly known as vinasse, as a potential culture medium for the production of Chlorella vulgaris and its most relevant metabolites. The effect of vinasse concentration on the composition of the biomass (proteins, carbohydrates, and lipids) was evaluated in treatments performed in 6-L tubular air-lift reactors. The reactors were operated at 25 °C for 18 days, in total darkness, under a continuous flow of air. Results showed a rapid growth of microalgae in the first ten days, when an average production of 0.87 g/L was reached. Then, the daily biomass productivity began to decrease, up to an average value of 11.8 g/L at the 16th day. For all treatments, there was a significant reduction in the concentration of most metabolites in the first eight days. This was likely due to the adaptation of the biomass to the new conditions, with a transition from autotrophic to heterotrophic metabolism. From the 10th day, the concentration of metabolites in the biomass began to increase, reaching a nearly constant value at the 16th day. The observed maximum concentrations (%w/w) were: 48.95% proteins, 2.88% xylose, 7.82% glucose, 4.54% arabinose, 8.28% fructose, and 4.82% lipids. These values were only marginally affected by the type of treatment. Overall, the results obtained suggest that vinasse is a promising and sustainable medium for the growth of C. vulgaris and the production of valuable metabolites. © 2019 by the authors.
dc.description.sponsorshipFunding text 1: Funding: This research was funded by Universidad Francisco de Paula Santander internal Research funding: FINU 44-2018 and The APC was funded by Universidad Mariana.
dc.description.sponsorshipFunding text 2: Acknowledgments: We would like to express our sincere gratitude to Universidad Francisco de Paula Santander for providing the equipment for this research and the Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIAS for the support to national PhD Doctorates through the Francisco José de Caldas scholarship program.
dc.description.sponsorshipFunding text 3: We would like to express our sincere gratitude to Universidad Francisco de Paula Santander for providing the equipment for this research and the Departamento Administrativo de Ciencia, Tecnolog?a e Innovaci?n COLCIENCIAS for the support to national PhD Doctorates through the Francisco Jos? de Caldas scholarship program. This research was funded by Universidad Francisco de Paula Santander internal Research funding: FINU 44-2018 and The APC was funded by Universidad Mariana.
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceWater (Switzerland)
dc.sourceWater
dc.sourceScopus
dc.titleVinasse as a sustainable medium for the production of Chlorella vulgaris UTEX 1803
datacite.contributorDepartment of Environmental Engineering, Universidad Mariana, Calle 18 No. 34-104, Pasto, 520002, Colombia
datacite.contributorDepartment of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta, 540003, Colombia
datacite.contributorDepartment of Chemical Engineering, Universidad Industrial de Santander, Cra 27 Calle 9, Bucaramanga, 680002, Colombia
datacite.contributorDepartment of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18., Roma, 00184, Italy
datacite.contributorQuintero-Dallos V., Department of Environmental Engineering, Universidad Mariana, Calle 18 No. 34-104, Pasto, 520002, Colombia
datacite.contributorGarcía-Martínez J.B., Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta, 540003, Colombia
datacite.contributorContreras-Ropero J.E., Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta, 540003, Colombia
datacite.contributorBarajas-Solano A.F., Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta, 540003, Colombia
datacite.contributorBarajas-Ferrerira C., Department of Chemical Engineering, Universidad Industrial de Santander, Cra 27 Calle 9, Bucaramanga, 680002, Colombia
datacite.contributorLavecchia R., Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18., Roma, 00184, Italy
datacite.contributorZuorro A., Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18., Roma, 00184, Italy
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonA. Zuorro
dc.contributor.contactpersonDepartment of Chemical Engineering, Materials and Environment, Sapienza University, Roma, Via Eudossiana 18., 00184, Italy
dc.contributor.contactpersonemail: antonio.zuorro@uniroma1.it
dc.contributor.sponsorUniversidad Francisco de Paula Santander
dc.contributor.sponsorUniversidad Mariana
dc.contributor.sponsorDepartamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), (FINU 44-2018)
dc.identifier.doi10.3390/w11081526
dc.identifier.instnameUniversidad Mariana
dc.identifier.local1526
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070294431&doi=10.3390%2fw11081526&partnerID=40&md5=d030eff62d606f5a24304a5999605cc9
dc.relation.citationvolume11
dc.relation.iscitedby36
dc.relation.referencesAslan S., Kapdan I., Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecol. Eng, 28, pp. 64-70, (2006)
dc.relation.referencesBoursier H., Beline F., Paul E., Piggery wastewater characterization for biological nitrogen removal process design, Bioresour. Technol, 96, pp. 351-358, (2005)
dc.relation.referencesOlguin E.J., Galicia S., Angulo-Guerrero O., Hernandez E., The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp (Arthrospira) grown on digested pig waste, Bioresour. Technol, 77, pp. 19-24, (2001)
dc.relation.referencesSheng A.L.K., Bilad M.R., Osman N.B., Arahman N., Sequencing batch membrane photobioreactor for real secondary effluent polishing using native microalgae: Process performance and full-scale projection, J. Clean. Prod, 168, pp. 708-715, (2017)
dc.relation.referencesLeme R.M., Seabra J.E.A., Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry, Energy, 119, pp. 754-766, (2017)
dc.relation.referencesTapie W.A.D., Prato-Garcia D., Guerrero H., Biodegradation of sugarcane vinasses by the white-rot fungi Pleurotus ostreatus in a packed bed reactor, Trop. Subtrop. Agroecosyst, 19, pp. 145-150, (2016)
dc.relation.referencesHoarau J., Caro Y., Grondin I., Petit T., Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review, Water Proc. Eng, 24, pp. 11-25, (2018)
dc.relation.referencesInforme de sostenibilidad 2016-2017
dc.relation.referencesCifras Informativas del Sector Biocombustibles
dc.relation.referencesRodrigues Reis C.E., Hu B., Vinasse from sugarcane ethanol production: Better treatment or better utilization?, Energy Res, pp. 1-7, (2017)
dc.relation.referencesSingh N.K., Patel D.B., Microalgae for Bioremediation of Distillery Effluent, Farming for Food and Water Security, pp. 83-109, (2012)
dc.relation.referencesSalgueiro J.L., Perez L., Maceiras R., Sanchez A., Cancela A., Bioremediation of wastewater using Chlorella vulgaris microalgae: Phosphorus and organic matter, Int. J. Environ. Res, 10, pp. 465-470, (2016)
dc.relation.referencesGonzalez A., Kafarov V., Microalgae based biorefinery: Issues to consider, Ciencia Tecnol. Fut, 4, pp. 5-22, (2011)
dc.relation.referencesOlguin E.J., Phycoremediation: Key issues for cost-effective nutrient removal processes, Biotechnol. Adv, 22, pp. 81-91, (2003)
dc.relation.referencesAyala J.F., Bravo B.P., Animal wastes media for Spirulina production, Algol. Stud, 36, pp. 349-355, (1984)
dc.relation.referencesCosta R.H., Medri W., Perdomo C.C., High-rate pond for treatment of piggery wastes, Water Sci. Technol, 42, pp. 357-362, (2000)
dc.relation.referencesJimenez-Perez M.V., Sanchez-Castillo P., Romera O., Fernandez-Moreno D., Perez-Martinez C., Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure, Enzyme Microb. Technol, 34, pp. 392-398, (2004)
dc.relation.referencesBrennan L., Owende P., Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev, 14, pp. 557-577, (2010)
dc.relation.referencesTravieso L., Benitez F., Dupeyron R., Algae growth potential measurement in distillery wastes, Bull. Environ. Contam. Toxicol, 62, pp. 483-489, (1999)
dc.relation.referencesValderrama L., Del Campo C., Rodriguez C., Bashan Y., de-Bashan L., Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula, Water Res, 36, pp. 4185-4192, (2002)
dc.relation.referencesLiu J., Huang J., Jiang Y., Chen F., Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis, Bioresour. Technol, 107, pp. 393-398, (2012)
dc.relation.referencesDos Santos R.R., Araujo O.D.Q.F., de Medeiros J.L., Chaloub R.M., Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse, Bioresour. Technol, 204, pp. 38-48, (2016)
dc.relation.referencesSantana H., Cereijo C.R., Teles V.C., Nascimento R.C., Fernandes M.S., Brunale P., Campanha R.C., Soares I.P., Silva F.C.P., Sabaini P.S., Et al., Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization, Bioresour. Technol, 228, pp. 133-140, (2017)
dc.relation.referencesZuorro A., Lavecchia R., Medici F., Piga L., Use of cell wall degrading enzymes for the production of high-quality functional products from tomato processing waste, Chem. Eng. Trans, 38, pp. 355-360, (2014)
dc.relation.referencesZuorro A., Maffei G., Lavecchia R., Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste, Chem. Eng. Trans, 39, pp. 463-468, (2014)
dc.relation.referencesAndersen R.A., Berges J.A., Harrison P.J., Watanabe M.M., Appendix A-Recipes for Freshwater and Seawater Media, Algal Culturing Techniques, pp. 429-538, (2005)
dc.relation.referencesMoheimani N.R., Borowitzka M.A., Isdepsky A., Sing S.F., Standard Methods for Measuring Growth of Algae and Their Composition, Algae for Biofuels and Energy, pp. 265-284, (2013)
dc.relation.referencesBarajas-Solano A., Guzman-Monsalve A., Kafarov V., Effect of carbon-nitrogen ratio for the biomass production, hydrocarbons and lipids on Botryoccus braunii UIS 003, Chem. Eng. Trans, 49, pp. 247-252, (2016)
dc.relation.referencesDuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F., Colorimetric method for determination of sugars and related substances, Anal. Chem, 28, pp. 350-356, (1956)
dc.relation.referencesJerez-Mogollon S.J., Rueda-Quinonez L.V., Alfonso-Velazco L.Y., Barajas-Solano A.F., Barajas-Ferreira C., Kafarov V., Improvement of lab-scale production of microalgal carbohydrates for biofuel production, Ciencia Tecnol. Fut, 5, pp. 103-116, (2012)
dc.relation.referencesGloria N.A., Filho O., Aplicação da vinhaça como fertilizante, Boletin Técnico do PLANALSUCAR, 5, pp. 5-38, (1983)
dc.relation.referencesDoucha J., Livansky K., Production of high-density Chlorella culture grown in fermenters, Appl. Phycol, 24, pp. 35-43, (2012)
dc.relation.referencesCandido C., Lombardi A.T., Growth of Chlorella vulgaris in treated conventional and biodigested vinasses, J. Appl. Phychol, 29, pp. 45-53, (2017)
dc.relation.referencesEngin I.K., Cekmecelioglu D., Yucel A.M., Oktem H.A., Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium sp ME05 on vinasse and its scale up for biodiesel production, Bioresour. Technol, 251, pp. 128-134, (2018)
dc.relation.referencesBumbak F., Cook S., Zachleder V., Hauser S., Kovar K., Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations, Appl. Microbiol. Biotechnol, 91, pp. 31-46, (2011)
dc.relation.referencesTravieso L., Benitez F., Sanchez E., Borja R., Leon M., Raposo F., Rincon B., Performance of a laboratory-scale microalgae pond for secondary treatment of distillery wastewaters, Chem. Biochem. Eng, 22, pp. 467-473, (2008)
dc.relation.referencesFlemming H.C., Wingender J., The biofilm matrix, Nat. Rev. Microbiol, 8, pp. 623-633, (2010)
dc.relation.referencesDe Philippis R., Vincenzini M., Exocellular polysaccharides fromcyanobacteria and their possible applications, FEMS. Microbiol. Rev, 22, pp. 151-175, (1998)
dc.relation.referencesCoca M., Barrocal V.M., Lucas S., Gonzalez-Benito G., Garcia-Cubero M.T., Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media, Food Bioprod. Process, 94, pp. 306-312, (2015)
dc.relation.referencesRodolfi L., Zittelli G.C., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M.C., Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng, 102, pp. 100-112, (2009)
dc.relation.referencesIllman A.M., Scragg A.H., Shales S.W., Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol, 27, pp. 631-635, (2000)
dc.relation.referencesDragone G., Fernandes B., Abreu A., Vicente A., Teixeira J., Nutrient limitation as a strategy for increasing starch accumulation in microalgae, Appl. Energy, 88, pp. 3331-3335, (2011)
dc.relation.referencesLing J., Nip S., Cheok W.L., de Toledo R.A., Shim H., Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater, Bioresour. Technol, 173, pp. 132-139, (2014)
dc.relation.referencesOlguin E.J., Dorantes E., Castillo O.S., Hernandez-Landa V.J., Anaerobic digestates from vinasse promote growth and lipid enrichment in Neochloris oleoabundans cultures, J. Appl. Phychol, 27, pp. 1813-1822, (2015)
dc.relation.referencesPerez-Garcia O., Escalante F., de-Bashan L., Bashan Y., Heterotrophic cultures of microalgae: Metabolism and potential products, Water Res, 45, pp. 11-36, (2011)
dc.relation.referencesDemirbas M.F., Biorefineries for biofuel upgrading: A critical review, Appl. Energy, 86, pp. 151-161, (2009)
dc.relation.referencesBhatt A.K., Bhatia R.K., Thakur S., Rana N., Sharma V., Rathour R.K., Fuel from waste: A review on scientific solution for waste management and environment conservation, Prospects of Alternative Transportation Fuels, pp. 205-233, (2018)
dc.relation.referencesRoversi R., Cumo F., D'Angelo A., Pennacchia E., Piras G., Feasibility of municipal waste reuse for building envelopes for near zero-energy buildings, WIT Trans. Ecol. Environ, 224, pp. 115-125, (2017)
dc.relation.referencesDe Santoli L., Basso G.L., Garcia D.A., Piras G., Spiridigliozzi G., Dynamic simulation model of trans-critical carbon dioxide heat pump application for boosting low temperature distribution networks in dwellings, Energies, 12, (2019)
dc.relation.referencesD'Souza F.M.L., Kelly G.J., Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae, Aquaculture, 181, pp. 311-329, (2000)
dc.relation.referencesChen F., High cell density culture of microalgae in heterotrophic growth, Trends Biotechnol, 14, pp. 421-426, (1996)
dc.relation.referencesWhitton R., Ometto F., Pidou M., Jarvis P., Villa R., Jefferson B., Microalgae for municipal wastewater nutrient remediation: Mechanisms, reactors and outlook for tertiary treatment, Environ. Technol. Rev, 4, pp. 133-148, (2015)
dc.relation.referencesChristenson L., Sims R., Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol. Adv, 29, pp. 686-702, (2011)
dc.relation.referencesZuorro A., Maffei G., Lavecchia R., Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy, J. Clean. Prod, 111, pp. 279-284, (2016)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsBiorefinery
dc.subject.keywordsChlorella vulgaris
dc.subject.keywordsDistillery wastewater
dc.subject.keywordsHeterotrophic cultures
dc.subject.keywordsVinasse
dc.subject.keywordsChlorella vulgaris
dc.subject.keywordsBiomass
dc.subject.keywordsBiomolecules
dc.subject.keywordsLipids
dc.subject.keywordsMetabolites
dc.subject.keywordsProteins
dc.subject.keywordsBiorefineries
dc.subject.keywordsChlorella vulgaris
dc.subject.keywordsDistillery wastewaters
dc.subject.keywordsHeterotrophic culture
dc.subject.keywordsVinasses
dc.subject.keywordsbiomass
dc.subject.keywordsbioreactor
dc.subject.keywordsbyproduct
dc.subject.keywordsconcentration (composition)
dc.subject.keywordsglucose
dc.subject.keywordsheterotrophy
dc.subject.keywordsmetabolite
dc.subject.keywordsmicroalga
dc.subject.keywordsprotein
dc.subject.keywordsreduction
dc.subject.keywordswastewater treatment
dc.subject.keywordsEcology
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue8


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem