Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorHuertas J.
dc.contributor.authorCuevas J.G.
dc.contributor.authorPaulino L.
dc.contributor.authorSalazar F.
dc.contributor.authorArumí J.L.
dc.contributor.authorDörner J.
dc.date.accessioned2024-12-02T20:15:32Z
dc.date.available2024-12-02T20:15:32Z
dc.date.issued2016
dc.identifier.issn7189516
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28907
dc.description.abstractResearch in volcanic-ash soils has shown that they largely capture the dairy slurry following application to land, however, their hydrological properties would favor nutrient leaching. Our objective was to evaluate the contribution of biogeochemical and hydrological controls on the pollution of groundwater by cattle slurry applied to a permanent grassland growing on a volcanic soil. We sampled groundwater chemistry since 10 months before the fertilization (three samplings), and 16 months after, with samplings 1-2 months after the fertigation. Following fertilization, ammonium, exchangeable potassium, and magnesium soil concentrations increased in the fertilized plots compared to the control plots. In contrast, no effect of slurry on groundwater quality was detected, with the exception of dissolved organic nitrogen, a main component of dairy slurry that increased in the groundwater below the fertilized plots. Despite the fact that biogeochemical controls predominate, hydrological aspects would be important when rainfall is high, evapotranspiration is low, groundwater table level is high, and water movement in the saturated zone increases. We concluded that the application of slurry to pastures under rates comparable to a high fertilization in the short term, does not generally impact the groundwater quality in volcanic ash-derived soils. © 2016, Sociedad Chilena de la Ciencia del Suelo. All rights reserved.
dc.description.sponsorshipThis research formed part of the Master thesis of the first author. Funding was provided by the Fondecyt grant 1110156. We thank the Santa Rosa Experimental Station staff for their help, especially the Administrators Rodrigo Barriga and Carlos Villagra. Logistic support was provided by Mr. César Leiva and César Lemus. The Garden Unit of the Universidad Austral de Chile also contributed with grass maintenance. Additional acknowledgements go to Drs. Dries Huygens, Jorge Nimptsch, Dante Pinochet, and Susana Valle for methodological and conceptual advice. Finally, Center CRHIAM (Conicyt/Fondap/15130015 grant) funded the English revision.
dc.format17
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSociedad Chilena de la Ciencia del Suelo
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceJournal of Soil Science and Plant Nutrition
dc.sourceJ. Soil Sci Plant Nutri.
dc.sourceScopus
dc.titleDairy slurry application to grasslands and groundwater quality in a volcanic soil
datacite.contributorFacultad de Ingeniería, Universidad Mariana, San Juan de Pasto, Colombia
datacite.contributorCentro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
datacite.contributorUniversidad Austral de Chile, Facultad de Ciencias Agrarias, Instituto de Ingeniería Agraria y Suelos, Valdivia, Chile
datacite.contributorUniversidad Austral de Chile, Centro de Investigación en Suelos Volcánicos, Valdivia, Chile
datacite.contributorUniversidad de Concepción, Facultad de Agronomía, Chillán, Chile
datacite.contributorInstituto de Investigaciones Agropecuarias, Centro Regional de Investigación INIA Remehue, Osorno, Chile
datacite.contributorUniversidad de Concepción, Facultad de Ingeniería Agrícola, Departamento de Recursos Hídricos, Centro CRHIAM Conicyt/Fondap, Chillán, 15130015, Chile
datacite.contributorHuertas J., Facultad de Ingeniería, Universidad Mariana, San Juan de Pasto, Colombia
datacite.contributorCuevas J.G., Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile, Universidad Austral de Chile, Facultad de Ciencias Agrarias, Instituto de Ingeniería Agraria y Suelos, Valdivia, Chile, Universidad Austral de Chile, Centro de Investigación en Suelos Volcánicos, Valdivia, Chile
datacite.contributorPaulino L., Universidad Austral de Chile, Centro de Investigación en Suelos Volcánicos, Valdivia, Chile, Universidad de Concepción, Facultad de Agronomía, Chillán, Chile
datacite.contributorSalazar F., Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación INIA Remehue, Osorno, Chile
datacite.contributorArumí J.L., Universidad de Concepción, Facultad de Ingeniería Agrícola, Departamento de Recursos Hídricos, Centro CRHIAM Conicyt/Fondap, Chillán, 15130015, Chile
datacite.contributorDörner J., Universidad Austral de Chile, Facultad de Ciencias Agrarias, Instituto de Ingeniería Agraria y Suelos, Valdivia, Chile, Universidad Austral de Chile, Centro de Investigación en Suelos Volcánicos, Valdivia, Chile
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonJ.G. Cuevas
dc.contributor.contactpersonCentro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
dc.contributor.contactpersonemail: jxcuevas@ceaza.cl
dc.contributor.sponsorFondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT, (1110156)
dc.contributor.sponsorFondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT
dc.contributor.sponsorUniversidad Austral de Chile, UACh
dc.identifier.instnameUniversidad Mariana
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85008950157&partnerID=40&md5=db9009d39143416e3fc0d7a2ad19e1aa
dc.relation.citationendpage762
dc.relation.citationstartpage745
dc.relation.citationvolume16
dc.relation.iscitedby10
dc.relation.referencesAlfaro M., Salazar F., Iraira S., Teuber N., Villarroel D., Ramirez L., Nitrogen, phosphorus and potassium losses in a grazing system with different stocking rates in a volcanic soil, Chil. J. Agric. Res, 68, pp. 146-155, (2008)
dc.relation.referencesOfficial Methods of Analysis of AOAC International, (1996)
dc.relation.referencesStandard Methods for Examination of Water and Wastewater., (2005)
dc.relation.referencesBouwer H., The Bouwer and Rice slug test: An update, Ground Water, 27, pp. 304-309, (1989)
dc.relation.referencesCardenas L.M., Hatch D.J., Scholefield D., Jhurreea D., Clark I.M., Hirsch P.R., Salazar F., Rao-Ravella S., Alfaro M., Potential mineralization and nitrification in volcanic grassland soils in Chile, Soil Sci. Plant Nutr, 59, pp. 380-391, (2013)
dc.relation.referencesCuevas J.G., Huertas J., Leiva C., Paulino L., Dorner J., Arumi J.L., Nutrient retention in a microwatershed with low levels of anthropogenic pollution, Bosque, 35, pp. 75-88, (2014)
dc.relation.referencesDhondt K., Boeckx P., Verhoest N., Hofman G., Van Cleemput O., Assessment of temporal and spatial variation of nitrate removal in riparian zones, Environ. Monit. Assess, 116, pp. 197-215, (2006)
dc.relation.referencesDi H., Cameron K., Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr. Cycl, Agroecosys, 46, pp. 237-256, (2002)
dc.relation.referencesDorner J., Dec D., Peng X., Horn R., Change of shrinkage behavior of an Andisol in southern Chile: Effects of land use and wetting/drying cycles, Soil Till. Res, 106, pp. 45-53, (2009)
dc.relation.referencesDorner J., Dec D., Peng X., Horn R., Effect of Land Use on Structural Stability and Pore Functions of an Andisol (Typic Hapludand) in Southern Chile. (In Spanish with English abstract.), J. Soil Sci. Plant Nutr, 9, pp. 190-209, (2009)
dc.relation.referencesDorner J., Dec D., Peng X., Horn R., Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions, Geoderma, 159, pp. 189-197, (2010)
dc.relation.referencesDorner J., Huertas J., Cuevas J.G., Leiva C., Paulino L., Arumi J.L., Water content dynamics in a volcanic ash soil slope in southern Chile, J. Plant Nut. Soil Sci, 178, pp. 693-702, (2015)
dc.relation.referencesEllies A., Gayoso J., Physical-mechanical characterization of two sandstone facies in the Valdivia province (Chile). (In Spanish.), Agro Sur., 7, pp. 14-18, (1979)
dc.relation.referencesGraeber D., Gelbrecht J., Pusch M.T., Anlanger C., Von Schiller D., Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams, Sci. Total Environ, 536, pp. 435-446, (2012)
dc.relation.referencesHedin L., Armesto J., Johnson A., Patterns of nutrient loss from unpolluted old-growth temperate forests: Evaluation of biogeochemical theory, Ecology, 76, pp. 493-509, (1995)
dc.relation.referencesHefting M.M., Bobbink R., De Caluwe H., Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones, J. Environ. Qual, 32, pp. 1194-1203, (2003)
dc.relation.referencesHeinz M., Graeber D., Zak D., Zwirnmann E., Gelbrecht J., Pusch M.T., Comparison of organic matter composition in agricultural versus forest affected headwaters with special emphasis on organic nitrogen, Environ. Sci. Technol, 49, pp. 2081-2090, (2015)
dc.relation.referencesHuygens D., Boeckx P., Templer P., Paulino L., Van Cleemput O., Oyarzun C., Muller C., Godoy R., Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils, Nat. Geosci, 1, pp. 543-548, (2008)
dc.relation.referencesLowrance R.R., Leonard R.A., Asmussen L.E., Todd R.L., Nutrient budgets for agricultural watersheds in the southeastern coastal plain, Ecology, 66, pp. 287-296, (1985)
dc.relation.referencesMartinez-Lagos J., Salazar F., Alfaro M., Rosas M., Macias F., Nitrogen mineralization in a silandic andosol fertilized with dairy slurry and urea, J. Soil Sci. Plant Nutr, 15, pp. 37-48, (2015)
dc.relation.referencesMcHugh T.E., Kulkarni P.R., Newell C.J., Time Vs. Money: A Quantitative Evaluation of Monitoring Frequency Vs, (2016)
dc.relation.referencesMorgan M., The behavior of soil fertilizer phosphorus, Phosphorus Loss from Soil to Water., pp. 137-149, (1997)
dc.relation.referencesMunoz E., Navia R., Zaror C., Alfaro M., Ammonia emissions from livestock production in Chile: An inventory and uncertainty analysis, J. Soil Sci. Plant Nutr, 16, pp. 60-75, (2016)
dc.relation.referencesPayet N., Nicolini E., Rogers K., Saint Macary H., Vauclin M., Evidence of soil pollution by nitrates derived from pig effluent using 18O and 15N isotope analyses, Agron. Sustain. Dev, 30, pp. 743-751, (2010)
dc.relation.referencesPerez C., Carmona M., Armesto J., Non-symbiotic nitrogen fixation, net nitrogen mineralization and denitrification in evergreen forests of Chiloé Island, Chile: A comparison with other temperate forests, Gayana Bot, 60, pp. 25-33, (2003)
dc.relation.referencesRoyer I., Angers D.A., Chantigny M.H., Simard R.R., Cluis D., Dissolved organic carbon in runoff and tile-drain water under corn and forage fertilized with hog manure, J. Environ. Qual, 36, pp. 855-863, (2007)
dc.relation.referencesSadzawka A., Carrasco M., Demanet R., Flores H., Grez R., Mora M., Neaman A., Métodos de análisis de tejidos vegetales. 2ª ed, Serie Actas INIA, 40, (2007)
dc.relation.referencesSadzawka A., Carrasco M., Grez R., Mora M., Flores H., Neaman A., Métodos de análisis recomendados para los suelos de Chile, Serie Actas INIA, 34, (2006)
dc.relation.referencesSalazar F.J., Dumont J.C., Chadwick D., Saldana R., Santana M., Characterization of dairy slurry in southern Chile farms, Agric. Téc, 67, pp. 155-162, (2007)
dc.relation.referencesSalazar F., Dumont J., Santana M., Pain B., Chadwick D., Owen E., Survey of the management and utilization of dairy effluents in Southern Chile (In Spanish, with English abstract.), Arch. Med. Vet, 35, pp. 215-225, (2003)
dc.relation.referencesSalazar F., Martinez-Lagos J., Alfaro M., Misselbrook T., Low nitrogen leaching losses following a high rate of dairy slurry and urea application to pasture on a volcanic soil in Southern Chile, Agr. Ecosyst. Environ, 160, pp. 23-28, (2012)
dc.relation.referencesSalazar F., Martinez-Lagos J., Alfaro M., Misselbrook T., Ammonia emission from a permanent grassland on volcanic soil after the treatment with dairy slurry and urea, Atmos. Environ, 95, pp. 591-597, (2014)
dc.relation.referencesSmith K., Chambers B., Utilizing the nitrogen content of organic manures on farms-problems and practical solutions, Soil Use Manage, 9, pp. 105-112, (1993)
dc.relation.referencesSrinivas R., Bhakar P., Singh A.P., Groundwater Quality Assessment in some selected area of Rajasthan, India Using Fuzzy Multi-Criteria Decision Making Tool. Aquat, Procedia, 4, pp. 1023-1030, (2015)
dc.relation.referencesWahlen J.K., Chang C., Clayton G.W., Carefoot J.P., Cattle manure amendments can increase the pH of acidic soils, Soil Sci. Soc. Am. J, 64, pp. 962-966, (2000)
dc.relation.referencesA Framework for International Classification, Correlation and Communication, (2006)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsAndisol
dc.subject.keywordsDissolved organic nitrogen
dc.subject.keywordsGroundwater pollution
dc.subject.keywordsHydraulic properties
dc.subject.keywordsSaturated zone
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue3


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem