Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorMoreno-Casas P.A.
dc.contributor.authorScott F.
dc.contributor.authorDelpiano J.
dc.contributor.authorAbell J.A.
dc.contributor.authorCaicedo F.
dc.contributor.authorMuñoz R.
dc.contributor.authorVergara-Fernández A.
dc.date.accessioned2024-12-02T20:15:30Z
dc.date.available2024-12-02T20:15:30Z
dc.date.issued2020
dc.identifier.issn0013936X
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28903
dc.description.abstractThe gas−liquid mass transfer coefficient is a key parameter to the design and operation of biotrickling filters that governs the transport rate of contaminants and oxygen from the gas phase to the liquid phase, where pollutant biodegradation occurs. Mass transfer coefficients are typically estimated via experimental procedures to produce empirical correlations, which are only valid for the bioreactor configuration and range of operational conditions under investigation. In this work, a new method for the estimation of the gas−liquid mass transfer coefficient in biotrickling filters is presented. This novel methodology couples a realistic description of the packing media (polyurethane foam without a biofilm) obtained using microtomography with computational fluid dynamics. The two-dimensional analysis reported in this study allowed capturing the mechanisms of the complex processes involved in the creeping porous air and water flow in the presence of capillary effects in biotrickling filters. Model predictions matched the experimental mass transfer coefficients (±30%) under a wide range of operational conditions. © 2020 American Chemical Society. All rights reserved.
dc.description.sponsorshipThe present work has been sponsored by the CONICYT—Chile (National Commission for Scientific and Technological Research) project Fondecyt 1190521. The financial support from the Regional Government of Castilla y León is also gratefully acknowledged (UIC71 and CLU-2017-09). J.D. thankfully acknowledges funding from projects Fondecyt 1180685, CONICYT Basal FB0008, and from Fondo de Ayuda a la Investigacion (FAI), Universidad de los Andes, INV-IN-2017-05.
dc.format7
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceEnvironmental Science and Technology
dc.sourceEnviron. Sci. Technol.
dc.sourceScopus
dc.titleMechanistic description of convective gas−liquid mass transfer in biotrickling filters using CFD modeling
datacite.contributorGreen Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, 7620001, Chile
datacite.contributorFacultad de Ingeniería, Universidad Mariana, San Juan de Pasto, 520002, Colombia
datacite.contributorInstitute of Sustainable Processes, Universidad de Valladolid, Valladolid, 47005, Spain
datacite.contributorMoreno-Casas P.A., Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, 7620001, Chile
datacite.contributorScott F., Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, 7620001, Chile
datacite.contributorDelpiano J., Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, 7620001, Chile
datacite.contributorAbell J.A., Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, 7620001, Chile
datacite.contributorCaicedo F., Facultad de Ingeniería, Universidad Mariana, San Juan de Pasto, 520002, Colombia
datacite.contributorMuñoz R., Institute of Sustainable Processes, Universidad de Valladolid, Valladolid, 47005, Spain
datacite.contributorVergara-Fernández A., Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, 7620001, Chile
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.sponsorComisión Nacional de Investigación Científica y Tecnológica, CONICYT
dc.contributor.sponsorFondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT, (1190521)
dc.contributor.sponsorUniversidad de los Andes, Uniandes, (INV-IN-2017-05)
dc.contributor.sponsorJunta de Castilla y León, (1180685, CLU-2017-09, FB0008)
dc.identifier.doi10.1021/acs.est.9b02662
dc.identifier.instnameUniversidad Mariana
dc.identifier.localESTHA
dc.identifier.pissn31789508
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076748461&doi=10.1021%2facs.est.9b02662&partnerID=40&md5=24b30831c5ff9f248781fe0139803c8b
dc.relation.citationendpage426
dc.relation.citationstartpage419
dc.relation.citationvolume54
dc.relation.iscitedby11
dc.relation.referencesEstrada J.M., Lebrero R., Quijano G., Bart Kraakman N.J.R., Munoz R., Odour abatement technologies in WWTPS: Energy and economic efficiency, Sewage Treatment Plants: Economic Evaluation of Innovative Technologies for Energy Efficiency, pp. 163-187, (2015)
dc.relation.referencesCox H.H.J., Deshusses M.A., Converse B.M., Schroeder E.D., Iranpour R., Odor and volatile organic compound treatment by biotrickling filters: Pilot-scale studies at Hyperion treatment plant, Water Environ. Res., 74, pp. 557-563, (2002)
dc.relation.referencesSalamanca D., Dobslaw D., Engesser K.-H., Removal of cyclohexane gaseous emissions using a biotrickling filter system, Chemosphere, 176, pp. 97-107, (2017)
dc.relation.referencesSan-Valero P., Dorado A.D., Martinez-Soria V., Gabaldon C., Biotrickling filter modeling for styrene abatement. Part 1: Model development, calibration and validation on an industrial scale, Chemosphere, 191, pp. 1066-1074, (2018)
dc.relation.referencesMoya A., Guimera X., del Campo F.J., Prats-Alfonso E., Dorado A.D., Baeza M., Villa R., Gabriel D., Gamisans X., Gabriel G., Biofilm oxygen profiling using an array of microelectrodes on a microfabricated needle, Procedia Eng, 87, pp. 256-259, (2014)
dc.relation.referencesLopez L.R., Dorado A.D., Mora M., Gamisans X., Lafuente J., Gabriel D., Modeling an aerobic biotrickling filter for biogas desulfurization through a multi-step oxidation mechanism, Chem. Eng. J., 294, pp. 447-457, (2016)
dc.relation.referencesKim S., Deshusses M.A., Determination of mass transfer coefficients for packing materials used in biofilters and biotrickling filters for air pollution control. 1., Experimental Results. Chem. Eng. Sci., 63, pp. 841-855, (2008)
dc.relation.referencesLebrero R., Estrada J.M., Munoz R., Quijano G., Toluene mass transfer characterization in a biotrickling filter, Biochem. Eng. J., 60, pp. 44-49, (2012)
dc.relation.referencesEstrada J.M., Dudek A., Munoz R., Quijano G., Fundamental study on gas-liquid mass transfer in a biotrickling filter packed with polyurethane foam, J. Chem. Technol. Biotechnol., 89, pp. 1419-1424, (2014)
dc.relation.referencesDumont E., Mass transport phenomena in multiphasic gas/ water/nap systems, Adv. Chem. Eng., 54, pp. 1-51, (2019)
dc.relation.referencesDupnock T.L., Deshusses M.A., Detailed investigations of dissolved hydrogen and hydrogen mass transfer in a biotrickling filter for upgrading biogas, Bioresour. Technol., 290, (2019)
dc.relation.referencesPrades L., Dorado A.D., Climent J., Guimera X., Chiva S., Gamisans X., CFD modeling of a fixed-bed biofilm reactor coupling hydrodynamics and biokinetics, Chem. Eng. J., 313, pp. 680-692, (2017)
dc.relation.referencesSoulaine C., Gjetvaj F., Garing C., Roman S., Russian A., Gouze P., Tchelepi H.A., The impact of sub-resolution porosity of X-ray microtomography images on the permeability, Transp. Porous Media, 113, pp. 227-243, (2016)
dc.relation.referencesMirabolghasemi M., Prodanovic M., DiCarlo D., Ji H., Prediction of empirical properties using direct pore-scale simulation of straining through 3D microtomography images of porous media, J. Hydrol., 529, pp. 768-778, (2015)
dc.relation.referencesHirt C.W., Nichols B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, pp. 201-225, (1981)
dc.relation.referencesHiguera P., Lara J.L., Losada I.J., Three-dimensional interaction of waves and porous coastal structures using OpenFOAM. Part I: Formulation and validation, Coast. Eng., 83, pp. 243-258, (2014)
dc.relation.referencesVersteeg H.K., Malalasekera W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, (2009)
dc.relation.referencesDeshpande S.S., Anumolu L., Trujillo M.F., Evaluating the performance of the two-phase flow solver interfoam, Comput. Sci. Discovery, 5, (2012)
dc.relation.referencesPainmanakul P., Wachirasak J., Jamnongwong M., Hebrard G., Theoretical prediction of volumetric mass transfer coefficient (KLA) for designing an aeration tank, Eng. J., 13, pp. 13-28, (2009)
dc.relation.referencesMurthy Z.V.P., Gupta S.K., Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model, Desalination, 109, pp. 39-49, (1997)
dc.relation.referencesToor H.L., Marchello J.M., Film-penetration model for mass and heat transfer, AIChE J, 4, pp. 97-101, (1958)
dc.relation.referencesAsher W.E., Pankow J.F., Prediction of gas/water mass transport coefficients by a surface renewal model, Environ. Sci. Technol., 25, pp. 1294-1300, (1991)
dc.relation.referencesCarberry J.J., A boundary-layer model of fluid-particle mass transfer in fixed beds, AIChE J, 6, pp. 460-463, (1960)
dc.relation.referencesDutta B.K., Principles of Mass Transfer and Separation Processes, (2007)
dc.relation.referencesBird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, (2002)
dc.relation.referencesO'Brien R.N., Hyslop W.F., A laser interferometric study of the diffusion of o 2, n 2, h 2, and Ar into water, Can. J. Chem., 55, pp. 1415-1421, (1977)
dc.relation.referencesNielsen D.R., Daugulis A.J., McLellan P.J., A novel method of simulating oxygen mass transfer in two-phase partitioning bioreactors, Biotechnol. Bioeng., 83, pp. 735-742, (2003)
dc.relation.referencesTribe L.A., Briens C.L., Margaritis A., Determination of the volumetric mass transfer coefficient (kLa) using the dynamic ?gas out-gas in? Method: Analysis of errors caused by dissolved oxygen probes, Biotechnol. Bioeng., 46, pp. 388-392, (1995)
dc.relation.referencesRohsennow W.M., Hartnett J.P., Cho Y.I., Handbook of Heat Transfer Fundamentals, (1998)
dc.relation.referencesEstrada J.M., Lebrero R., Quijano G., Perez R., Figueroa-Gonzalez I., Garcia-Encina P.A., Munoz R., Methane abatement in a gas-recycling biotrickling filter: Evaluating innovative operational strategies to overcome mass transfer limitations, Chem. Eng. J., 253, pp. 385-393, (2014)
dc.relation.referencesEstrada J.M., Dudek A., Munoz R., Quijano G., Fundamental study on gas-liquid mass transfer in a biotrickling filter packed with polyurethane foam, J. Chem. Technol. Biotechnol., 89, pp. 1419-1424, (2014)
dc.relation.referencesDorado A.D., RodrA-Guez G., Ribera G., Bonsfills A., Gabriel D., Lafuente J., Gamisans X., Evaluation of mass transfer coefficients in biotrickling filters: Experimental determination and comparison to correlations, Chem. Eng. Technol., 32, pp. 1941-1950, (2009)
dc.relation.referencesvan Krevelen D.W., Hoftijzer P.J., Studies of gas absorption. I. Liquid film resistance to gas absorption in scrubbers, Recl. Trav. Chim. Pays-Bas, 66, pp. 49-65, (2010)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsBiodegradation, Environmental
dc.subject.keywordsBiofilms
dc.subject.keywordsBioreactors
dc.subject.keywordsFiltration
dc.subject.keywordsOxygen
dc.subject.keywordsBiodegradation
dc.subject.keywordsBiofilters
dc.subject.keywordsBiological water treatment
dc.subject.keywordsComputational fluid dynamics
dc.subject.keywordsFlow of water
dc.subject.keywordsLiquids
dc.subject.keywordsoxygen
dc.subject.keywordspolyurethan foam
dc.subject.keywordswater
dc.subject.keywordsoxygen
dc.subject.keywordsBio-trickling filters
dc.subject.keywordsBioreactor configurations
dc.subject.keywordsEmpirical correlations
dc.subject.keywordsExperimental procedure
dc.subject.keywordsGas-liquid mass transfer
dc.subject.keywordsGas-liquid mass-transfer coefficient
dc.subject.keywordsOperational conditions
dc.subject.keywordsTwo-dimensional analysis
dc.subject.keywordsbiodegradation
dc.subject.keywordscomputational fluid dynamics
dc.subject.keywordsconvection
dc.subject.keywordsdesign method
dc.subject.keywordsexperimental study
dc.subject.keywordsfilter
dc.subject.keywordsgas
dc.subject.keywordsmass transfer
dc.subject.keywordsoperations technology
dc.subject.keywordsparameter estimation
dc.subject.keywordsArticle
dc.subject.keywordsbiodegradation
dc.subject.keywordscomputational fluid
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.spaArtículo científico
dc.relation.citationissue1


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem