dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.contributor.author | Peluffo-Ordóñez D.H. | |
dc.contributor.author | Castro-Ospina A.E. | |
dc.contributor.author | Alvarado-Pérez J.C. | |
dc.contributor.author | Revelo-Fuelagán E.J. | |
dc.contributor.editor | Pardo A. | |
dc.contributor.editor | Kittler J. | |
dc.contributor.other | 20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015 | |
dc.date.accessioned | 2024-12-02T20:15:30Z | |
dc.date.available | 2024-12-02T20:15:30Z | |
dc.date.issued | 2015 | |
dc.identifier.isbn | 978-331925750-1 | |
dc.identifier.issn | 3029743 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/28902 | |
dc.description.abstract | This work introduces a multiple kernel learning (MKL) approach for selecting and combining different spectralmethods of dimensionality reduction (DR).From a predefined set of kernels representing conventional spectralDRmethods, a generalized kernel is calculated by means of a linear combination of kernel matrices. Coefficients are estimated via a variable ranking aimed at quantifying how much each variable contributes to optimize a variance preservation criterion. All considered kernels are testedwithinakernelPCAframework.Theexperiments are carriedoutover well-known real and artificial data sets. The performance of compared DR approaches is quantified by a scaled version of the average agreement rate between K-ary neighborhoods. Proposed MKL approach exploits the representation ability of every single method to reach a better embedded data for both getting more intelligible visualization and preserving the structure of data. © Springer International Publishing Switzerland 2015. | |
dc.description.sponsorship | This work is supported by the Faculty of Engineering of Universidad Cooperativa de Colombia-Pasto, and the ESLINGA Research Group. | |
dc.format | 8 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Verlag | |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.source | Lect. Notes Comput. Sci. | |
dc.source | Scopus | |
dc.title | Multiple kernel learning for spectral dimensionality reduction | |
datacite.contributor | Universidad Cooperativa de Colombia – Pasto, Pasto, Colombia | |
datacite.contributor | Research Center of the Instituto Tecnologico Metropolitano, Medellin, Colombia | |
datacite.contributor | Universidad de Salamanca, Salamanca, Spain | |
datacite.contributor | Universidad Mariana, Pasto, Colombia | |
datacite.contributor | Universidad de Nariño, Pasto, Colombia | |
datacite.contributor | Peluffo-Ordóñez D.H., Universidad Cooperativa de Colombia – Pasto, Pasto, Colombia | |
datacite.contributor | Castro-Ospina A.E., Research Center of the Instituto Tecnologico Metropolitano, Medellin, Colombia | |
datacite.contributor | Alvarado-Pérez J.C., Universidad de Salamanca, Salamanca, Spain, Universidad Mariana, Pasto, Colombia | |
datacite.contributor | Revelo-Fuelagán E.J., Universidad de Nariño, Pasto, Colombia | |
datacite.contributor | 20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015 | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.contributor.contactperson | A.E. Castro-Ospina | |
dc.contributor.contactperson | Research Center of the Instituto Tecnologico Metropolitano, Medellin, Colombia | |
dc.contributor.contactperson | email: andrescastro@itm.edu.co | |
dc.contributor.sponsor | ESLINGA | |
dc.contributor.sponsor | Universidad Cooperativa de Colombia-Pasto | |
dc.contributor.sponsor | Argentine Society for Pattern Recognition (SARP-SADIO) | |
dc.contributor.sponsor | Chilean Association for Pattern Recognition (AChiRP) | |
dc.contributor.sponsor | Cuban Association for Pattern Recognition (ACRP) | |
dc.contributor.sponsor | Et al | |
dc.contributor.sponsor | Mexican Association for Computer Vision, Neural Computing and Robotics (MACVNR) | |
dc.contributor.sponsor | Special Interest Group of the Brazilian Computer Society (SIGPR-SBC) | |
dc.contributor.sponsor | Argentine Society for Pattern Recognition (SARP-SADIO) | |
dc.contributor.sponsor | Chilean Association for Pattern Recognition (AChiRP) | |
dc.contributor.sponsor | Cuban Association for Pattern Recognition (ACRP) | |
dc.contributor.sponsor | Et al | |
dc.contributor.sponsor | Mexican Association for Computer Vision, Neural Computing and Robotics (MACVNR) | |
dc.contributor.sponsor | Special Interest Group of the Brazilian Computer Society (SIGPR-SBC) | |
dc.identifier.doi | 10.1007/978-3-319-25751-8_75 | |
dc.identifier.instname | Universidad Mariana | |
dc.identifier.local | A75 | |
dc.identifier.reponame | Repositorio Clara de Asis | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983670534&doi=10.1007%2f978-3-319-25751-8_75&partnerID=40&md5=30750d84cf435a51314c1e67dfcc5d48 | |
dc.relation.citationendpage | 634 | |
dc.relation.citationstartpage | 626 | |
dc.relation.citationvolume | 9423 | |
dc.relation.conferencedate | 9 November 2015 through 12 November 2015 | |
dc.relation.conferenceplace | Montevideo | |
dc.relation.iscitedby | 6 | |
dc.relation.references | Borg I., Modern Multidimensional Scaling: Theory and Applications, (2005) | |
dc.relation.references | Belkin M., Niyogi P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, 15, 6, pp. 1373-1396, (2003) | |
dc.relation.references | Roweis S.T., Saul L.K., Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 5500, pp. 2323-2326, (2000) | |
dc.relation.references | Hinton G.E., Roweis S.T., Stochastic neighbor embedding, Advances in Neural Information Processing Systems, pp. 833-840, (2002) | |
dc.relation.references | Wolf L., Bileschi S., Combining variable selection with dimensionality reduction, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 2, pp. 801-806, (2005) | |
dc.relation.references | Peluffo D.H., Lee J.A., Verleysen M., Rodriguez-Sotelo J.L., Castellanos-Dominguez G., Unsupervised relevance analysis for feature extraction and selection: A distance-based approach for feature relevance, International Conference on Pattern Recognition, Applications and Methods - ICPRAM, (2014) | |
dc.relation.references | Langone R., Alzate C., Suykens J.A., Kernel Spectral Clustering with Memory Effect, (2013) | |
dc.relation.references | Maestri M., Cassanello M., Horowitz G., Kernel PCA performance in processes with multiple operation modes, Chemical Product and Process Modeling, 4, 5, (2009) | |
dc.relation.references | Wolf L., Shashua A., Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach, Journal Ofmachine Learning, 6, pp. 1855-1887, (2005) | |
dc.relation.references | Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering, Computer Methods and Programs in Biomedicine, (2012) | |
dc.relation.references | Ham J., Lee D.D., Mika S., Scholkopf B., A kernel view of the dimensionality reduction of manifolds, Proceedings of the Twenty-First International Conference on Machine Learning, (2004) | |
dc.relation.references | Peluffo-Ordonez D., Lee J., Verleysen M., Generalized kernel framework for unsupervised spectral methods of dimensionality reduction, IEEE Symposium Series on Computational Intelligence, (2014) | |
dc.relation.references | Peluffo-Ordonez D., Garcia-Vega S., Langone R., Suykens J., Castellanos-Dominguez G., Et al., Kernel spectral clustering for dynamic data using multiple kernel learning, The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1-6, (2013) | |
dc.relation.references | Molina-Giraldo S., Alvarez-Meza A.M., Peluffo-Ordonez D.H., Castellanos-Dominguez G., Image segmentation based on multi-kernel learning and feature relevance analysis, IBERAMIA 2012. LNCS, 7637, pp. 501-510, (2012) | |
dc.relation.references | Lecun Y., Bottou L., Bengio Y., Haffner P., Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86, 11, pp. 2278-2324, (1998) | |
dc.relation.references | Lee J.A., Renard E., Bernard G., Dupont P., Verleysen M., Type 1 and 2 Mixtures of Kullback-Leibler Divergences as Cost Functions in Dimensionality Reduction Based on Similarity Preservation, (2013) | |
dc.relation.references | Cook J., Sutskever I., Mnih A., Hinton G.E., Visualizing similarity data with a mixture of maps, International Conference on Artificial Intelligence and Statistics, pp. 67-74, (2007) | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.keywords | Dimensionality reduction | |
dc.subject.keywords | Generalized kernel | |
dc.subject.keywords | Kernel PCA | |
dc.subject.keywords | Multiple kernel learning | |
dc.subject.keywords | Pattern recognition | |
dc.subject.keywords | Artificial data | |
dc.subject.keywords | Dimensionality reduction | |
dc.subject.keywords | Generalized kernels | |
dc.subject.keywords | Kernel matrices | |
dc.subject.keywords | Kernel PCA | |
dc.subject.keywords | Linear combinations | |
dc.subject.keywords | Multiple Kernel Learning | |
dc.subject.keywords | Variable ranking | |
dc.subject.keywords | Data visualization | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTDATA | |
dc.type.spa | Contribución a congreso / Conferencia | |