Show simple item record

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.authorPeluffo-Ordóñez D.H.
dc.contributor.authorCastro-Ospina A.E.
dc.contributor.authorAlvarado-Pérez J.C.
dc.contributor.authorRevelo-Fuelagán E.J.
dc.contributor.editorPardo A.
dc.contributor.editorKittler J.
dc.contributor.other20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015
dc.date.accessioned2024-12-02T20:15:30Z
dc.date.available2024-12-02T20:15:30Z
dc.date.issued2015
dc.identifier.isbn978-331925750-1
dc.identifier.issn3029743
dc.identifier.urihttps://hdl.handle.net/20.500.14112/28902
dc.description.abstractThis work introduces a multiple kernel learning (MKL) approach for selecting and combining different spectralmethods of dimensionality reduction (DR).From a predefined set of kernels representing conventional spectralDRmethods, a generalized kernel is calculated by means of a linear combination of kernel matrices. Coefficients are estimated via a variable ranking aimed at quantifying how much each variable contributes to optimize a variance preservation criterion. All considered kernels are testedwithinakernelPCAframework.Theexperiments are carriedoutover well-known real and artificial data sets. The performance of compared DR approaches is quantified by a scaled version of the average agreement rate between K-ary neighborhoods. Proposed MKL approach exploits the representation ability of every single method to reach a better embedded data for both getting more intelligible visualization and preserving the structure of data. © Springer International Publishing Switzerland 2015.
dc.description.sponsorshipThis work is supported by the Faculty of Engineering of Universidad Cooperativa de Colombia-Pasto, and the ESLINGA Research Group.
dc.format8
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceLect. Notes Comput. Sci.
dc.sourceScopus
dc.titleMultiple kernel learning for spectral dimensionality reduction
datacite.contributorUniversidad Cooperativa de Colombia – Pasto, Pasto, Colombia
datacite.contributorResearch Center of the Instituto Tecnologico Metropolitano, Medellin, Colombia
datacite.contributorUniversidad de Salamanca, Salamanca, Spain
datacite.contributorUniversidad Mariana, Pasto, Colombia
datacite.contributorUniversidad de Nariño, Pasto, Colombia
datacite.contributorPeluffo-Ordóñez D.H., Universidad Cooperativa de Colombia – Pasto, Pasto, Colombia
datacite.contributorCastro-Ospina A.E., Research Center of the Instituto Tecnologico Metropolitano, Medellin, Colombia
datacite.contributorAlvarado-Pérez J.C., Universidad de Salamanca, Salamanca, Spain, Universidad Mariana, Pasto, Colombia
datacite.contributorRevelo-Fuelagán E.J., Universidad de Nariño, Pasto, Colombia
datacite.contributor20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.contributor.contactpersonA.E. Castro-Ospina
dc.contributor.contactpersonResearch Center of the Instituto Tecnologico Metropolitano, Medellin, Colombia
dc.contributor.contactpersonemail: andrescastro@itm.edu.co
dc.contributor.sponsorESLINGA
dc.contributor.sponsorUniversidad Cooperativa de Colombia-Pasto
dc.contributor.sponsorArgentine Society for Pattern Recognition (SARP-SADIO)
dc.contributor.sponsorChilean Association for Pattern Recognition (AChiRP)
dc.contributor.sponsorCuban Association for Pattern Recognition (ACRP)
dc.contributor.sponsorEt al
dc.contributor.sponsorMexican Association for Computer Vision, Neural Computing and Robotics (MACVNR)
dc.contributor.sponsorSpecial Interest Group of the Brazilian Computer Society (SIGPR-SBC)
dc.contributor.sponsorArgentine Society for Pattern Recognition (SARP-SADIO)
dc.contributor.sponsorChilean Association for Pattern Recognition (AChiRP)
dc.contributor.sponsorCuban Association for Pattern Recognition (ACRP)
dc.contributor.sponsorEt al
dc.contributor.sponsorMexican Association for Computer Vision, Neural Computing and Robotics (MACVNR)
dc.contributor.sponsorSpecial Interest Group of the Brazilian Computer Society (SIGPR-SBC)
dc.identifier.doi10.1007/978-3-319-25751-8_75
dc.identifier.instnameUniversidad Mariana
dc.identifier.localA75
dc.identifier.reponameRepositorio Clara de Asis
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84983670534&doi=10.1007%2f978-3-319-25751-8_75&partnerID=40&md5=30750d84cf435a51314c1e67dfcc5d48
dc.relation.citationendpage634
dc.relation.citationstartpage626
dc.relation.citationvolume9423
dc.relation.conferencedate9 November 2015 through 12 November 2015
dc.relation.conferenceplaceMontevideo
dc.relation.iscitedby6
dc.relation.referencesBorg I., Modern Multidimensional Scaling: Theory and Applications, (2005)
dc.relation.referencesBelkin M., Niyogi P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, 15, 6, pp. 1373-1396, (2003)
dc.relation.referencesRoweis S.T., Saul L.K., Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 5500, pp. 2323-2326, (2000)
dc.relation.referencesHinton G.E., Roweis S.T., Stochastic neighbor embedding, Advances in Neural Information Processing Systems, pp. 833-840, (2002)
dc.relation.referencesWolf L., Bileschi S., Combining variable selection with dimensionality reduction, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 2, pp. 801-806, (2005)
dc.relation.referencesPeluffo D.H., Lee J.A., Verleysen M., Rodriguez-Sotelo J.L., Castellanos-Dominguez G., Unsupervised relevance analysis for feature extraction and selection: A distance-based approach for feature relevance, International Conference on Pattern Recognition, Applications and Methods - ICPRAM, (2014)
dc.relation.referencesLangone R., Alzate C., Suykens J.A., Kernel Spectral Clustering with Memory Effect, (2013)
dc.relation.referencesMaestri M., Cassanello M., Horowitz G., Kernel PCA performance in processes with multiple operation modes, Chemical Product and Process Modeling, 4, 5, (2009)
dc.relation.referencesWolf L., Shashua A., Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach, Journal Ofmachine Learning, 6, pp. 1855-1887, (2005)
dc.relation.referencesUnsupervised feature relevance analysis applied to improve ECG heartbeat clustering, Computer Methods and Programs in Biomedicine, (2012)
dc.relation.referencesHam J., Lee D.D., Mika S., Scholkopf B., A kernel view of the dimensionality reduction of manifolds, Proceedings of the Twenty-First International Conference on Machine Learning, (2004)
dc.relation.referencesPeluffo-Ordonez D., Lee J., Verleysen M., Generalized kernel framework for unsupervised spectral methods of dimensionality reduction, IEEE Symposium Series on Computational Intelligence, (2014)
dc.relation.referencesPeluffo-Ordonez D., Garcia-Vega S., Langone R., Suykens J., Castellanos-Dominguez G., Et al., Kernel spectral clustering for dynamic data using multiple kernel learning, The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1-6, (2013)
dc.relation.referencesMolina-Giraldo S., Alvarez-Meza A.M., Peluffo-Ordonez D.H., Castellanos-Dominguez G., Image segmentation based on multi-kernel learning and feature relevance analysis, IBERAMIA 2012. LNCS, 7637, pp. 501-510, (2012)
dc.relation.referencesLecun Y., Bottou L., Bengio Y., Haffner P., Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86, 11, pp. 2278-2324, (1998)
dc.relation.referencesLee J.A., Renard E., Bernard G., Dupont P., Verleysen M., Type 1 and 2 Mixtures of Kullback-Leibler Divergences as Cost Functions in Dimensionality Reduction Based on Similarity Preservation, (2013)
dc.relation.referencesCook J., Sutskever I., Mnih A., Hinton G.E., Visualizing similarity data with a mixture of maps, International Conference on Artificial Intelligence and Statistics, pp. 67-74, (2007)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsDimensionality reduction
dc.subject.keywordsGeneralized kernel
dc.subject.keywordsKernel PCA
dc.subject.keywordsMultiple kernel learning
dc.subject.keywordsPattern recognition
dc.subject.keywordsArtificial data
dc.subject.keywordsDimensionality reduction
dc.subject.keywordsGeneralized kernels
dc.subject.keywordsKernel matrices
dc.subject.keywordsKernel PCA
dc.subject.keywordsLinear combinations
dc.subject.keywordsMultiple Kernel Learning
dc.subject.keywordsVariable ranking
dc.subject.keywordsData visualization
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTDATA
dc.type.spaContribución a congreso / Conferencia


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record