Mostrar el registro sencillo del ítem
Medición de temperatura mediante sensores inteligentes basados en microcontrolador
dc.creator | López Rubio, Anghelo Marino | |
dc.date | 2016-01-13 | |
dc.date.accessioned | 2022-09-20T14:46:45Z | |
dc.date.available | 2022-09-20T14:46:45Z | |
dc.identifier | https://revistas.umariana.edu.co/index.php/unimar/article/view/859 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14112/25713 | |
dc.description | La temperatura es una de las variables a tener en cuenta dentro del desarrollo de cualquier proceso a nivel industrial, comercial e investigativo, entre otros, ya que su influencia en el desarrollo del mismo es primordial y, en algunos casos, definitoria. El presente trabajo busca abordar los diferentes elementos básicos de medición de temperatura de mayor uso en los últimos años y su aplicación en algunos casos específicos, en especial, aquellos relacionados con el desarrollo e implementación de sensores inteligentes basados en microcontroladores y microprocesadores de carácter comercial y de bajo costo. Finalmente, se discuten los avances encontrados, y se concluye sobre lo encontrado y lo que se espera desarrollar a futuro en este campo. | spa |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Mariana | spa |
dc.relation | https://revistas.umariana.edu.co/index.php/unimar/article/view/859/pdf_7 | |
dc.relation | /*ref*/Analog Devices. (2013). AD590. 2-Terminal IC Temperature Transducer. U.S.A., orwood, MA. Retrieved from http://www.analog.com/static/imported-files/data_sheets/AD590.pdf | |
dc.relation | /*ref*/Analog Devices Inc. (2002). ADuC824. Microconverter Dual Channel 16/24-bit ADCs with embedded flash MCU. | |
dc.relation | /*ref*/Atmel Corporation. (2008). AT89S518-bit MICROCONTROLLER. | |
dc.relation | /*ref*/Bin, C., Xinchao, J., Shaomin, Y. & Jianxu, Y. (2011). Applications Research on Temeperature WSN Nodes in Switchgear Assemblies Based on TinyOS and ZigBee. IEEE, 535-538. | |
dc.relation | /*ref*/Bolton, W. (2013). Mecatronica: sistemas de control electrónico en la ingenieria mecánica y eléctrica. Un enfoque multidisciplinario (5ta. ed.). Mexico: Alfaomega. | |
dc.relation | /*ref*/Boris, B., Hocenski, Z. & Cvitas, L. (2006). Optimal Approximation Parameters of Temperature Sensor Transfer Characteristic for Implementation in Low Cost Microcontroller Systems. IEEE International Symposium on Industrial Electronics, 2784-2787. doi:10.1109/ISIE.2006.296055 | |
dc.relation | /*ref*/Chen, P., Chen, T., Wang, Y. & Chen, C. (2009). A Time-Domain Sub-Micro Watt Temperature Sensor With Digital Set-Point Programming. IEEE Sensors Journal, 9(12), 1639-1646. doi:10.1109/JSEN.2009.2029035 | |
dc.relation | /*ref*/Chen, P., Tsai, S., Kao, S., Lin, H. & Lin, C. (2011). Intelligent wireless sensor temperature monitoring system — A case study of regional hospital in Taiwan. 2011 International Conference on Machine Learning and Cybernetics, 477-482. doi:10.1109/ICMLC.2011.6016778 | |
dc.relation | /*ref*/Cheon, J., Member, S., Lee, J. & Lee, I. (2009). A Single-Chip CMOS Smoke and Temperature Sensor for an Intelligent Fire Detector. IEEE Sensors Journal, 9(8), 914-921. | |
dc.relation | /*ref*/Córdoba, A. y Angel, C. (2010). Diseño y Construcción de un Transmisor de Temperatura Basado en Interfaz Digital Directa. 8 LACCEI Latin American and Caribean Conference for Engineering and Technology 2010. “Innovation and Developement for the Americas†, 1–9. | |
dc.relation | /*ref*/Creus, A. (2009). Instrumentos industriales. Su ajuste y calibración. Alfaomega. | |
dc.relation | /*ref*/_____. (2011). Instrumentacion industrial. Alfaomega. | |
dc.relation | /*ref*/Dallas Semiconductor & Maxim. (2009). DS18B20 Programmable Resolution 1-Wire Digital Thermometer. Retrieved from http://neutrino.phys.ksu.edu/~gahs/doublechooz/DC_SlowMRS/DS/DS18B20.pdf | |
dc.relation | /*ref*/Dheenadhayalan, R., Sakthivel, M., Arul, A., Madhusoodanan, K., & Mohanakrishnan, P. (2010). Reliability comparison of computer based core temperature monitoring system with two and three thermocouples per sub-assembly for Fast Breeder Reactors. 2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH), 455-461. doi:10.1109/ICRESH.2010.5779593 | |
dc.relation | /*ref*/Ding, Y., Dai, X. & Zhang, T. (2010). Low-Cost Fiber-Optic Temperature Measurement System for High-Voltage Electrical Power Equipment. IEEE Transactions on Instrumentation and Measurement, 59(4), 923-933. doi:10.1109/TIM.2009.2030930 | |
dc.relation | /*ref*/Fisher, D. & Kebede, H. (2010). A low-cost microcontroller-based system to monitor crop temperature and water status. Computers and Electronics in Agriculture, 74(1), 168-173. doi:10.1016/j.compag.2010.07.006 | |
dc.relation | /*ref*/Freescale Semiconductor. (2009). MC9S12XDP512 Microcontroller Data Sheet. Retrieved from http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf | |
dc.relation | /*ref*/Gil-RodrÃguez, M., RodrÃguez-Sinobas, L., BenÃtez-Buelga, J. & Sánchez-Calvo, R. (2013). Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters. Agricultural Water Management, 120, 72-78. doi:10.1016/j.agwat.2012.10.012 | |
dc.relation | /*ref*/Gomes, J. Ferreira, P. & Ruano, A. (2011). Implementation of an intelligent sensor for measurement and prediction of solar radiation and atmospheric temperature. 2011 IEEE 7th International Symposium on Intelligent Signal Processing, 1-6. doi:10.1109/WISP.2011.6051713 | |
dc.relation | /*ref*/Gómez, J., Reyes, R. & Guzman, D. (2008). Temas especiales de instrumentación y control. Cuba: Editorial Felix Varela. | |
dc.relation | /*ref*/Hang, H., Song, J., Yang, F. & Fan, X. (2009). Design of Smart Temperature Transmitter. ICROS-SICE International Joint Conference, 8, 1575-1579. | |
dc.relation | /*ref*/Hong, G. & Jianxiu, S. (2011). Design Of The Temperature Signal Wireless Receiver And Display System On Polishing Interface In Chemical Mechanical Polishing. Procedia Engineering, 24, 417-421. doi:10.1016/j.proeng.2011.11.2668 | |
dc.relation | /*ref*/Huddleston, C. (2007). Intelligent sensor design using the microchip dsPIC. (Newnes, Ed.) (p. 303). Burlington, USA: Elsevier. Retrieved from http://books.google.com/books?hl=en&lr=&id=YYdZJrU09gIC&oi=fnd&pg=PP2&dq=Intelligent+sensor+design+using+the+microchip+dspic&ots=_PzKP1685V&sig=EJCUOPOBg_VILAA0pE22QltTNXw | |
dc.relation | /*ref*/Hung, P., McLoone, S., Irwin, G. & Kee, R. (2008). Sliding window two-thermocouple sensor characterization for variable flow environments. Transactions of the Institute of Measurement and Control, 30(5), 349–370. doi:10.1177/0142331208095379 | |
dc.relation | /*ref*/Jiménez, F. & Jiménez, A. (2012). Field Variables Monitoring in real time (GPS, soil moisture, temperature) with Precision Farming Applications. EATIS’12 Conference Proceedings, 89–93. | |
dc.relation | /*ref*/Kang, A., Zhang, C., Ji, X., Han, T., Li, R. & Li, X. (2013). SAW-RFID enabled temperature sensor. Sensors and Actuators A: Physical, 201, 105–113. doi:10.1016/j.sna.2013.06.016 | |
dc.relation | /*ref*/Keränen, K., Mäkinen, J., Korhonen, P., Juntunen, E., Heikkinen, V., & Mäkelä, J. (2010). Infrared temperature sensor system for mobile devices. Sensors and Actuators A: Physical, 158(1), 161–167. doi:10.1016/j.sna.2009.12.023 | |
dc.relation | /*ref*/Kochan, O., Kochan, R., Bojko, O. & Chyrka, M. (2007). Temperature Measurement System Based on Thermocouple with Controlled Temperature Field. IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. | |
dc.relation | /*ref*/Kommu, A. & Kanchi, R. (2013). ARM based temperature measurement and processing to remote computer using fiber optic cable. International Conference on Communication and Signal Processing, 423–427. doi:10.1109/iccsp.2013.6577088 | |
dc.relation | /*ref*/Krisch, H., Fernandes, N., Gossner, K., Lau, M. & Tournillon, S. (2012). High-Temperature Fiber-Optic Sensor for Low-Power Measurement of Wide Dynamic Strain Using Interferometric Techniques and Analog/DSP Methods. IEEE Sensors Journal, 12(1), 33–38. doi:10.1109/JSEN.2011.2112643 | |
dc.relation | /*ref*/Kyuma, K., Tai, S. & Nunoshita, M. (1982). Fiber-Optic Instrument for Tem Measurement. IEEE Journal of Quantum Electronics, 18(4), 676 - 679. | |
dc.relation | /*ref*/Liu, J., Ma, L. & Yang, J. (2011). Methods and Techniques of Temperature Measurement. IEEE, 5332–5334. | |
dc.relation | /*ref*/Liu, Y., Peng, W., Liang, Y., Zhang, X., Zhou, X. & Pan, L. (2013). Fiber-optic Mach–Zehnder interferometric sensor for high-sensitivity high temperature measurement. Optics Communications, 300, 194-198. doi:10.1016/j.optcom.2013.02.054 | |
dc.relation | /*ref*/Machin, G. (2012). Step change improvements in high-temperature thermocouple thermometry. UKACC International Conference on Control 2012, (September), 3–5. | |
dc.relation | /*ref*/Mahan, J., Conaty, W., Neilsen, J., Payton, P., & Cox, S. (2010). Field performance in agricultural settings of a wireless temperature monitoring system based on a low-cost infrared sensor. Computers and Electronics in Agriculture, 71(2), 176–181. doi:10.1016/j.compag.2010.01.005 | |
dc.relation | /*ref*/Microchip Technology Inc. (2010). dsPIC30F4014/4013 Data Sheet. High-Performance, 16-bit Digital Signal Controllers. Retrieved from http://ww1.microchip.com/downloads/en/DeviceDoc/70138G.pdf | |
dc.relation | /*ref*/Neaca, M. & Neaca, A. (2012). High temperatures measurement in industrial equipment. International Conference on Applied and Theoretical Electricity (ICATE), 1–6. doi:10.1109/ICATE.2012.6403446 | |
dc.relation | /*ref*/NXP SEMICONDUCTOR. (2011). LPC2141/42/44/46/48 Single-chip 16-bit/32-bit microcontrollers. | |
dc.relation | /*ref*/Preston-Thomas, H. (1990). Temperature Scale of 1990 The International Temperature Scale of 1990 ( ITS-90 ), 107, 186–194. | |
dc.relation | /*ref*/_____. (1993). ITS-90 Thermocouple Direct and Inverse Polynomials, 196–199. | |
dc.relation | /*ref*/Reyes, F., Cid, J. & Vargas, E. (2013). Mecatronica: control y automatizacion. Alfaomega. | |
dc.relation | /*ref*/Sardini, E. & Serpelloni, M. (2011). Self-Powered Wireless Sensor for Air Temperature and Velocity Measurements With Energy Harvesting Capability. IEEE Transactions on Instrumentation and Measurement, 60(5), 1838–1844. doi:10.1109/TIM.2010.2089090 | |
dc.relation | /*ref*/_____. (2012). Temperature Sensor. IEEE Transactions on Instrumentation and Measurement, 61(9), 2354–2361. | |
dc.relation | /*ref*/Sarma, U. & Boruah, P. (2010). Design and development of a high precision thermocouple based smart industrial thermometer with on line linearisation and data logging feature. Measurement, 43(10), 1589–1594. doi:10.1016/j.measurement.2010.09.003 | |
dc.relation | /*ref*/Sarma, U., Chakraborty, D. & Boruah, P. (2009). Sensors & Transducers Design of a Smart and High Precision Industrial Temperature Measurement and Monitoring System Using K-type Thermocouple and SPI-compatible Temperature Sensor. Sensors & Transducers Journal, 102(3), 1–9. | |
dc.relation | /*ref*/Schönberg, T., Ruusuvuori, K., Christensen, B., Boivie, K., Berild, J., Ronkainen, H. & Gellein, L. (2013). Surface Embedded Temperature Sensor On Tool Part For Real Time Injection Moulding Process Monitoring. IEEE, 116–119. doi:10.1109/Transducers.2013.6626715 | |
dc.relation | /*ref*/Shufen, L. & Junli, L. (2009). Research implementation of intelligent temperature thermometer. IEEE 6th International Power Electronics and Motion Control Conference, 3, 1263–1265. doi:10.1109/IPEMC.2009.5157579 | |
dc.relation | /*ref*/Sonneville, C., Degioanni, S., Martinet, C., De Ligny, D., Martinez, V., Jurdyc, A., Vouagner, D. (2014). Pressure-independent Brillouin Fiber Optic Sensors for temperature measurements. Journal of Non-Crystalline Solids, 8–11. doi:10.1016/j.jnoncrysol.2014.01.029 | |
dc.relation | /*ref*/Sun, H., Li, Y. & Jiang, F. (2011). Design and realization of the intelligent temperature transmitter. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 388–391. doi:10.1109/MEC.2011.6025482 | |
dc.relation | /*ref*/Swanson, D. (2012). Signal Processing for Intelligent Sensor Systems with MATLAB (2da. ed.). New York, USA: CRC Press. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:signal+processing+for+intelligent+sensor+systems+with+matlab#0 | |
dc.relation | /*ref*/Szabó, R., Gontean, A. & Lie, I. (2012). Embedded temperature monitoring system with a Microcontroller Used in the Automotive Industry. 20th Telecommunications Forum TELFOR, 1012–1015. | |
dc.relation | /*ref*/Texas Instrument Incorporated. (2012). TMS320F/C2810/11/12 DATA MANUAL. | |
dc.relation | /*ref*/_____. (2013a). LM35 Precision Centigrade Temperature Sensors. United States of America, Dallas, Texas. Retrieved from http://www.ti.com/lit/ds/symlink/lm35.pdf | |
dc.relation | /*ref*/_____. (2013b). LM94022. 1.5V, SC70, Multigain Analog Temperature Sensor With Class Ab Output. | |
dc.relation | /*ref*/Villalobos, O., Rico, G., Ortiz, R. & Eli, F. (2006). Medicion y control de procesos industriales. Mexico: Instituto Politécnico Nacional. | |
dc.relation | /*ref*/Volkov, P., Goryunov, A., Luk’yanov, A., Tertyshnik, A., Baidakova, N. & Luk’yanov, I. (2012). Fiber-optic temperature sensor based on low-coherence interferometry without scanning. Optik - International Journal for Light and Electron Optics, 124(15), 1982–1985. doi:10.1016/j.ijleo.2012.06.043 | |
dc.relation | /*ref*/Wang, J. (2012). Design Intelligent Temperature Monitoring System Based on DSP. 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 234–237. doi:10.1109/IHMSC.2012.152 | |
dc.relation | /*ref*/Wang, F., Wang, W., Cao, R. & Zhao, X. (2010). Temperature Moniter System of Heating Network Based on Optical Fiber Communication. IEEE, 4–7. | |
dc.relation | /*ref*/Wen-tian, H., & Jin-ping, L. (2010). Research and Design of Intelligent Temperature Control System. Second International Workshop on Education Technology and Computer Science, 538–541. doi:10.1109/ETCS.2010.17 | |
dc.relation | /*ref*/Wobschall, D. & Cherian, A. (2011). Miniaturized multi-channel thermocouple sensor system. IEEE Sensors Applications Symposium, 188–192. doi:10.1109/SAS.2011.5739804 | |
dc.relation | /*ref*/Yang, J., Sun, R., Ji, N., Li, L. & Chen, Z. (2009). The Portable Temperature and Humidity Monitor Based on Intelligent Sensor. First International Conference on Information Science and Engineering, 5245–5247. doi:10.1109/ICISE.2009.1241 | |
dc.source | Revista UNIMAR; Vol. 32 No. 2 (2014): Revista UNIMAR - Julio - Diciembre | en-US |
dc.source | Revista UNIMAR; Vol. 32 Núm. 2 (2014): Revista UNIMAR - Julio - Diciembre | spa |
dc.source | Revista UNIMAR; v. 32 n. 2 (2014): Revista UNIMAR - Julio - Diciembre | pt-BR |
dc.source | 2216-0116 | |
dc.source | 0120-4327 | |
dc.subject | Medición | spa |
dc.subject | microcontrolador | spa |
dc.subject | sensor inteligente | spa |
dc.subject | temperatura. | spa |
dc.title | Medición de temperatura mediante sensores inteligentes basados en microcontrolador | spa |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Revista UNIMAR [456]