Mostrar el registro sencillo del ítem

dc.creatorLópez Rubio, Anghelo Marino
dc.date2016-01-13
dc.date.accessioned2022-09-20T14:46:45Z
dc.date.available2022-09-20T14:46:45Z
dc.identifierhttps://revistas.umariana.edu.co/index.php/unimar/article/view/859
dc.identifier.urihttps://hdl.handle.net/20.500.14112/25713
dc.descriptionLa temperatura es una de las variables a tener en cuenta dentro del desarrollo de cualquier proceso a nivel industrial, comercial e investigativo, entre otros, ya que su influencia en el desarrollo del mismo es primordial y, en algunos casos, definitoria. El presente trabajo busca abordar los diferentes elementos básicos de medición de temperatura de mayor uso en los últimos años y su aplicación en algunos casos especí­ficos, en especial, aquellos relacionados con el desarrollo e implementación de sensores inteligentes basados en microcontroladores y microprocesadores de carácter comercial y de bajo costo. Finalmente, se discuten los avances encontrados, y se concluye sobre lo encontrado y lo que se espera desarrollar a futuro en este campo.spa
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Marianaspa
dc.relationhttps://revistas.umariana.edu.co/index.php/unimar/article/view/859/pdf_7
dc.relation/*ref*/Analog Devices. (2013). AD590. 2-Terminal IC Temperature Transducer. U.S.A., orwood, MA. Retrieved from http://www.analog.com/static/imported-files/data_sheets/AD590.pdf
dc.relation/*ref*/Analog Devices Inc. (2002). ADuC824. Microconverter Dual Channel 16/24-bit ADCs with embedded flash MCU.
dc.relation/*ref*/Atmel Corporation. (2008). AT89S518-bit MICROCONTROLLER.
dc.relation/*ref*/Bin, C., Xinchao, J., Shaomin, Y. & Jianxu, Y. (2011). Applications Research on Temeperature WSN Nodes in Switchgear Assemblies Based on TinyOS and ZigBee. IEEE, 535-538.
dc.relation/*ref*/Bolton, W. (2013). Mecatronica: sistemas de control electrónico en la ingenieria mecánica y eléctrica. Un enfoque multidisciplinario (5ta. ed.). Mexico: Alfaomega.
dc.relation/*ref*/Boris, B., Hocenski, Z. & Cvitas, L. (2006). Optimal Approximation Parameters of Temperature Sensor Transfer Characteristic for Implementation in Low Cost Microcontroller Systems. IEEE International Symposium on Industrial Electronics, 2784-2787. doi:10.1109/ISIE.2006.296055
dc.relation/*ref*/Chen, P., Chen, T., Wang, Y. & Chen, C. (2009). A Time-Domain Sub-Micro Watt Temperature Sensor With Digital Set-Point Programming. IEEE Sensors Journal, 9(12), 1639-1646. doi:10.1109/JSEN.2009.2029035
dc.relation/*ref*/Chen, P., Tsai, S., Kao, S., Lin, H. & Lin, C. (2011). Intelligent wireless sensor temperature monitoring system — A case study of regional hospital in Taiwan. 2011 International Conference on Machine Learning and Cybernetics, 477-482. doi:10.1109/ICMLC.2011.6016778
dc.relation/*ref*/Cheon, J., Member, S., Lee, J. & Lee, I. (2009). A Single-Chip CMOS Smoke and Temperature Sensor for an Intelligent Fire Detector. IEEE Sensors Journal, 9(8), 914-921.
dc.relation/*ref*/Córdoba, A. y Angel, C. (2010). Diseño y Construcción de un Transmisor de Temperatura Basado en Interfaz Digital Directa. 8 LACCEI Latin American and Caribean Conference for Engineering and Technology 2010. “Innovation and Developement for the Americas†, 1–9.
dc.relation/*ref*/Creus, A. (2009). Instrumentos industriales. Su ajuste y calibración. Alfaomega.
dc.relation/*ref*/_____. (2011). Instrumentacion industrial. Alfaomega.
dc.relation/*ref*/Dallas Semiconductor & Maxim. (2009). DS18B20 Programmable Resolution 1-Wire Digital Thermometer. Retrieved from http://neutrino.phys.ksu.edu/~gahs/doublechooz/DC_SlowMRS/DS/DS18B20.pdf
dc.relation/*ref*/Dheenadhayalan, R., Sakthivel, M., Arul, A., Madhusoodanan, K., & Mohanakrishnan, P. (2010). Reliability comparison of computer based core temperature monitoring system with two and three thermocouples per sub-assembly for Fast Breeder Reactors. 2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH), 455-461. doi:10.1109/ICRESH.2010.5779593
dc.relation/*ref*/Ding, Y., Dai, X. & Zhang, T. (2010). Low-Cost Fiber-Optic Temperature Measurement System for High-Voltage Electrical Power Equipment. IEEE Transactions on Instrumentation and Measurement, 59(4), 923-933. doi:10.1109/TIM.2009.2030930
dc.relation/*ref*/Fisher, D. & Kebede, H. (2010). A low-cost microcontroller-based system to monitor crop temperature and water status. Computers and Electronics in Agriculture, 74(1), 168-173. doi:10.1016/j.compag.2010.07.006
dc.relation/*ref*/Freescale Semiconductor. (2009). MC9S12XDP512 Microcontroller Data Sheet. Retrieved from http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf
dc.relation/*ref*/Gil-Rodríguez, M., Rodríguez-Sinobas, L., Benítez-Buelga, J. & Sánchez-Calvo, R. (2013). Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters. Agricultural Water Management, 120, 72-78. doi:10.1016/j.agwat.2012.10.012
dc.relation/*ref*/Gomes, J. Ferreira, P. & Ruano, A. (2011). Implementation of an intelligent sensor for measurement and prediction of solar radiation and atmospheric temperature. 2011 IEEE 7th International Symposium on Intelligent Signal Processing, 1-6. doi:10.1109/WISP.2011.6051713
dc.relation/*ref*/Gómez, J., Reyes, R. & Guzman, D. (2008). Temas especiales de instrumentación y control. Cuba: Editorial Felix Varela.
dc.relation/*ref*/Hang, H., Song, J., Yang, F. & Fan, X. (2009). Design of Smart Temperature Transmitter. ICROS-SICE International Joint Conference, 8, 1575-1579.
dc.relation/*ref*/Hong, G. & Jianxiu, S. (2011). Design Of The Temperature Signal Wireless Receiver And Display System On Polishing Interface In Chemical Mechanical Polishing. Procedia Engineering, 24, 417-421. doi:10.1016/j.proeng.2011.11.2668
dc.relation/*ref*/Huddleston, C. (2007). Intelligent sensor design using the microchip dsPIC. (Newnes, Ed.) (p. 303). Burlington, USA: Elsevier. Retrieved from http://books.google.com/books?hl=en&lr=&id=YYdZJrU09gIC&oi=fnd&pg=PP2&dq=Intelligent+sensor+design+using+the+microchip+dspic&ots=_PzKP1685V&sig=EJCUOPOBg_VILAA0pE22QltTNXw
dc.relation/*ref*/Hung, P., McLoone, S., Irwin, G. & Kee, R. (2008). Sliding window two-thermocouple sensor characterization for variable flow environments. Transactions of the Institute of Measurement and Control, 30(5), 349–370. doi:10.1177/0142331208095379
dc.relation/*ref*/Jiménez, F. & Jiménez, A. (2012). Field Variables Monitoring in real time (GPS, soil moisture, temperature) with Precision Farming Applications. EATIS’12 Conference Proceedings, 89–93.
dc.relation/*ref*/Kang, A., Zhang, C., Ji, X., Han, T., Li, R. & Li, X. (2013). SAW-RFID enabled temperature sensor. Sensors and Actuators A: Physical, 201, 105–113. doi:10.1016/j.sna.2013.06.016
dc.relation/*ref*/Keränen, K., Mäkinen, J., Korhonen, P., Juntunen, E., Heikkinen, V., & Mäkelä, J. (2010). Infrared temperature sensor system for mobile devices. Sensors and Actuators A: Physical, 158(1), 161–167. doi:10.1016/j.sna.2009.12.023
dc.relation/*ref*/Kochan, O., Kochan, R., Bojko, O. & Chyrka, M. (2007). Temperature Measurement System Based on Thermocouple with Controlled Temperature Field. IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications.
dc.relation/*ref*/Kommu, A. & Kanchi, R. (2013). ARM based temperature measurement and processing to remote computer using fiber optic cable. International Conference on Communication and Signal Processing, 423–427. doi:10.1109/iccsp.2013.6577088
dc.relation/*ref*/Krisch, H., Fernandes, N., Gossner, K., Lau, M. & Tournillon, S. (2012). High-Temperature Fiber-Optic Sensor for Low-Power Measurement of Wide Dynamic Strain Using Interferometric Techniques and Analog/DSP Methods. IEEE Sensors Journal, 12(1), 33–38. doi:10.1109/JSEN.2011.2112643
dc.relation/*ref*/Kyuma, K., Tai, S. & Nunoshita, M. (1982). Fiber-Optic Instrument for Tem Measurement. IEEE Journal of Quantum Electronics, 18(4), 676 - 679.
dc.relation/*ref*/Liu, J., Ma, L. & Yang, J. (2011). Methods and Techniques of Temperature Measurement. IEEE, 5332–5334.
dc.relation/*ref*/Liu, Y., Peng, W., Liang, Y., Zhang, X., Zhou, X. & Pan, L. (2013). Fiber-optic Mach–Zehnder interferometric sensor for high-sensitivity high temperature measurement. Optics Communications, 300, 194-198. doi:10.1016/j.optcom.2013.02.054
dc.relation/*ref*/Machin, G. (2012). Step change improvements in high-temperature thermocouple thermometry. UKACC International Conference on Control 2012, (September), 3–5.
dc.relation/*ref*/Mahan, J., Conaty, W., Neilsen, J., Payton, P., & Cox, S. (2010). Field performance in agricultural settings of a wireless temperature monitoring system based on a low-cost infrared sensor. Computers and Electronics in Agriculture, 71(2), 176–181. doi:10.1016/j.compag.2010.01.005
dc.relation/*ref*/Microchip Technology Inc. (2010). dsPIC30F4014/4013 Data Sheet. High-Performance, 16-bit Digital Signal Controllers. Retrieved from http://ww1.microchip.com/downloads/en/DeviceDoc/70138G.pdf
dc.relation/*ref*/Neaca, M. & Neaca, A. (2012). High temperatures measurement in industrial equipment. International Conference on Applied and Theoretical Electricity (ICATE), 1–6. doi:10.1109/ICATE.2012.6403446
dc.relation/*ref*/NXP SEMICONDUCTOR. (2011). LPC2141/42/44/46/48 Single-chip 16-bit/32-bit microcontrollers.
dc.relation/*ref*/Preston-Thomas, H. (1990). Temperature Scale of 1990 The International Temperature Scale of 1990 ( ITS-90 ), 107, 186–194.
dc.relation/*ref*/_____. (1993). ITS-90 Thermocouple Direct and Inverse Polynomials, 196–199.
dc.relation/*ref*/Reyes, F., Cid, J. & Vargas, E. (2013). Mecatronica: control y automatizacion. Alfaomega.
dc.relation/*ref*/Sardini, E. & Serpelloni, M. (2011). Self-Powered Wireless Sensor for Air Temperature and Velocity Measurements With Energy Harvesting Capability. IEEE Transactions on Instrumentation and Measurement, 60(5), 1838–1844. doi:10.1109/TIM.2010.2089090
dc.relation/*ref*/_____. (2012). Temperature Sensor. IEEE Transactions on Instrumentation and Measurement, 61(9), 2354–2361.
dc.relation/*ref*/Sarma, U. & Boruah, P. (2010). Design and development of a high precision thermocouple based smart industrial thermometer with on line linearisation and data logging feature. Measurement, 43(10), 1589–1594. doi:10.1016/j.measurement.2010.09.003
dc.relation/*ref*/Sarma, U., Chakraborty, D. & Boruah, P. (2009). Sensors & Transducers Design of a Smart and High Precision Industrial Temperature Measurement and Monitoring System Using K-type Thermocouple and SPI-compatible Temperature Sensor. Sensors & Transducers Journal, 102(3), 1–9.
dc.relation/*ref*/Schönberg, T., Ruusuvuori, K., Christensen, B., Boivie, K., Berild, J., Ronkainen, H. & Gellein, L. (2013). Surface Embedded Temperature Sensor On Tool Part For Real Time Injection Moulding Process Monitoring. IEEE, 116–119. doi:10.1109/Transducers.2013.6626715
dc.relation/*ref*/Shufen, L. & Junli, L. (2009). Research implementation of intelligent temperature thermometer. IEEE 6th International Power Electronics and Motion Control Conference, 3, 1263–1265. doi:10.1109/IPEMC.2009.5157579
dc.relation/*ref*/Sonneville, C., Degioanni, S., Martinet, C., De Ligny, D., Martinez, V., Jurdyc, A., Vouagner, D. (2014). Pressure-independent Brillouin Fiber Optic Sensors for temperature measurements. Journal of Non-Crystalline Solids, 8–11. doi:10.1016/j.jnoncrysol.2014.01.029
dc.relation/*ref*/Sun, H., Li, Y. & Jiang, F. (2011). Design and realization of the intelligent temperature transmitter. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 388–391. doi:10.1109/MEC.2011.6025482
dc.relation/*ref*/Swanson, D. (2012). Signal Processing for Intelligent Sensor Systems with MATLAB (2da. ed.). New York, USA: CRC Press. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:signal+processing+for+intelligent+sensor+systems+with+matlab#0
dc.relation/*ref*/Szabó, R., Gontean, A. & Lie, I. (2012). Embedded temperature monitoring system with a Microcontroller Used in the Automotive Industry. 20th Telecommunications Forum TELFOR, 1012–1015.
dc.relation/*ref*/Texas Instrument Incorporated. (2012). TMS320F/C2810/11/12 DATA MANUAL.
dc.relation/*ref*/_____. (2013a). LM35 Precision Centigrade Temperature Sensors. United States of America, Dallas, Texas. Retrieved from http://www.ti.com/lit/ds/symlink/lm35.pdf
dc.relation/*ref*/_____. (2013b). LM94022. 1.5V, SC70, Multigain Analog Temperature Sensor With Class Ab Output.
dc.relation/*ref*/Villalobos, O., Rico, G., Ortiz, R. & Eli, F. (2006). Medicion y control de procesos industriales. Mexico: Instituto Politécnico Nacional.
dc.relation/*ref*/Volkov, P., Goryunov, A., Luk’yanov, A., Tertyshnik, A., Baidakova, N. & Luk’yanov, I. (2012). Fiber-optic temperature sensor based on low-coherence interferometry without scanning. Optik - International Journal for Light and Electron Optics, 124(15), 1982–1985. doi:10.1016/j.ijleo.2012.06.043
dc.relation/*ref*/Wang, J. (2012). Design Intelligent Temperature Monitoring System Based on DSP. 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 234–237. doi:10.1109/IHMSC.2012.152
dc.relation/*ref*/Wang, F., Wang, W., Cao, R. & Zhao, X. (2010). Temperature Moniter System of Heating Network Based on Optical Fiber Communication. IEEE, 4–7.
dc.relation/*ref*/Wen-tian, H., & Jin-ping, L. (2010). Research and Design of Intelligent Temperature Control System. Second International Workshop on Education Technology and Computer Science, 538–541. doi:10.1109/ETCS.2010.17
dc.relation/*ref*/Wobschall, D. & Cherian, A. (2011). Miniaturized multi-channel thermocouple sensor system. IEEE Sensors Applications Symposium, 188–192. doi:10.1109/SAS.2011.5739804
dc.relation/*ref*/Yang, J., Sun, R., Ji, N., Li, L. & Chen, Z. (2009). The Portable Temperature and Humidity Monitor Based on Intelligent Sensor. First International Conference on Information Science and Engineering, 5245–5247. doi:10.1109/ICISE.2009.1241
dc.sourceRevista UNIMAR; Vol. 32 No. 2 (2014): Revista UNIMAR - Julio - Diciembreen-US
dc.sourceRevista UNIMAR; Vol. 32 Núm. 2 (2014): Revista UNIMAR - Julio - Diciembrespa
dc.sourceRevista UNIMAR; v. 32 n. 2 (2014): Revista UNIMAR - Julio - Diciembrept-BR
dc.source2216-0116
dc.source0120-4327
dc.subjectMediciónspa
dc.subjectmicrocontroladorspa
dc.subjectsensor inteligentespa
dc.subjecttemperatura.spa
dc.titleMedición de temperatura mediante sensores inteligentes basados en microcontroladorspa
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem